

George Municipality

TRAFFIC IMPACT ASSESSMENT FOR THE PROPOSED GEORGE CAMPUS

Date November 2020

Ref. C1736

DOCUMENT CONTROL

Project Name: Traffic Impact Assessment for the Proposed George Campus	
Project Number:	C1774
Report for:	George Municipality

REVISIONS

Revision #	Date	Change Overview	Prepared by	Reviewed by
0	2019/10/04	Draft for Review	EB Jordaan, PEng	J Engelbrecht, PrEng
1	2019/10/18	Final	EB Jordaan, PEng	W Annandale, PrEng
2	2019/11/27	Revised access spacing	EB Jordaan, PEng	W Annandale, PrEng
3	2020/11/20	Client comments	EB Jordaan, IntPE	W Annandale, PrEng

APPROVAL

Approver Name: EB Jordaan, IntPE		Approver Position:	Technical Specialist
Approver Signature:	SIM.	Date:	2020/11/20

SMEC COMPANY DETAILS

Prepared by:	SMEC South Africa				
	Address:	65 Riebeek Street, Cape Town, 8001, South Africa			
	Telephone:	+27 (0) 21 417 2900			
	Contact Person:	Emile Jordaan			
	Email Address:	emile.jordaan@smec.com			
	www.smec.com				

www.smec.com

The information within this document is and shall remain the property of SMEC South Africa.

TABLE OF CONTENTS

PAGE(S)

1.	DEVELOPMENT PARTICULARS	4
2.	STUDY AREA	5
3.	BACKGROUND INFORMATION	7
3.1	Existing Roads	7
3.2	Public Transport Facilities	7
3.3	Non-Motorized Transport Facilities	8
3.4	Planned Changes to Transportation Facilities	9
3.5	Site Access	10
4.	OTHER PLANNING AUTHORITIES	11
5.	TRAFFIC DEMAND ESTIMATION	12
5.1	Assessment Year	12
5.2	Assessment Hour	12
5.3	Background Traffic Demand Estimation	12
5.4	Peak Hour	12
5.5	Traffic Growth	12
5.6	Existing exercised land-use rights	13
5.7	Trip Generation by Other Developments	13
5.8	Trip Generation	16
5.9	Trip Reduction Factors	17
5.10	Trip Types	
6.	TRIP DISTRIBUTION AND ASSIGNMENT	19
6.1	Trip Distribution – Site Access	19
6.2	Trip Distribution – External	19
6.3	Traffic Assignment	19
7.	TOTAL TRAFFIC DEMAND	21
7.1	Figures	21
8.	TRAFFIC IMPACT ASSESSMENT SCENARIOS	27
8.1	Intersection of N9 Knysna Street and Saasveld Road	28
8.2	Intersection of N9 Knysna Street and Kraaibosch Road	
8.3	Intersection of Saasveld Road and Meyer Road	32
8.4	Access 1 and Meyer Road	34
8.5	Access 2 and Saasveld Road	35
8.6	Access 3 and Saasveld Road / Kraaibosch Road	36
8.7	Analysis Summary	37

9.	PROPOSED IMPROVEMENTS	38
10.	SITE TRAFFIC ASSESSMENT	39
11.	CONCLUSIONS AND RECOMMENDATIONS	40
ANNEX	URE A: TRAFFIC SURVEY DATA	42
ANNEX	URE B: DETAILED SIDRA OUTPUTS	45

TABLE INDEX

PAGE(S)

Table 1: Development Phasing (Cumulative)	12
Table 2: Typical Growth Rates	13
Table 3: Other Development Trip Generation	15
Table 4: Trip Generation – Phase 1	16
Table 5: Trip Generation – Phase 1+2	16
Table 6: Trip Reduction Factor	17
Table 7: Revised Vehicular Trip Generation – Phase 1	17
Table 8: Revised Vehicular Trip Generation – Phase 1+2	17
Table 9: Public Transport Demand – Phase 1+2	18
Table 10: Trip Distribution: Site Access	19
Table 11: Trip Distribution: External	19
Table 12: Development Trip Distribution	19
Table 13: Analysis Summary (AM / PM)	37

FIGURE INDEX

PAGE(S)

-igure 1: Locality Plan (source: Google)	4
-igure 2: Primary Study Area (source: Aurecon)	5
-igure 3: Secondary Study Area (source: Google)	6
-igure 4: Public Transport Facilities (source: George Municipality)	7
-igure 5: NMT Facilities (source: Aurecon)	8
-igure 6 Planned NMT Infrastructure Projects (Iliso)	8
-igure 7: Planned George IPTN Phase 6 (source: Aurecon)	9
-igure 8: Site Access (source: Aurecon)	.10
-igure 9: Other Developments (source SMEC)	.14
-igure 10: Traffic Assignment	.20

Figure 11: 2018 Base Year Traffic	22
Figure 12: Phase 1 Development Trips	23
Figure 13: Phase 1+2 Development Trips	24
Figure 14: 2025 Design Year + Phase 1 Development Trips	25
Figure 15: 2035 Planning Year + Phase 1+2 Development Trips	26
Figure 16: Layout: N9 Knysna Street & Saasveld Road	28
Figure 17: Layout: N9 Knysna Street & Kraaibosch Road	30
Figure 18: Layout: Saasveld Road & Meyer Road	32
Figure 19: Proposed Layout: Saasveld Road & Meyer Road	33
Figure 20: Layout: Access 1 & Meyer Road	34
Figure 21: Layout: Access 2 & Saasveld Road	35
Figure 22: Layout: Access 1 & Meyer Road	36

1. DEVELOPMENT PARTICULARS

SMEC South Africa (Pty) Ltd was appointed by George Municipality to conduct a Traffic Impact Assessment for the proposed George Campus Development, in support of the Proposed Zoning and Subdivision Application of Erf 464 George. The site is bound by the Garden Route Dam to the north and Madiba Drive to the south. Refer to Figure 1.

Figure 1: Locality Plan (source: Google)

The site measures approximately 118 hectares in extent. The anticipated composition of the development is a Campus catering for 8 000 students, a Waterfront commercial development of 129 300 square metres Gross Lettable Area (GLA), and a Hotel of 34 500 square metres GLA (assumed to be 345 rooms). The Campus component will include residential units for 303 lecturers and 3 009 students.

For the purpose of this TIA it was assumed that the development will be 50% implemented over 5 years by 2024, and 100% within 10 years by 2029.

2. STUDY AREA

The study area is an area from which transportation elements are selected for the TIA. Such transport elements are selected as follows:

- Site accesses;
- Minimum of two intersections on the road where access is proposed; and
- All roads in sensitive areas.

Taking the above into consideration, the following primary study area and associated transportation elements have been selected for assessment (Refer to Figure 2):

- Stander Street & Site Access 1 (opposite Arthur Bleksley Street);
- Saasveld Road (West) & Site Access 2; and
- Saasveld Road & Site Access 3, opposite Road 1.

Figure 2: Primary Study Area (source: Aurecon)

Based on the type and extent of development, the following secondary study area and associated transportation elements have been selected for assessment (Refer to Figure 3):

- N9 Knysna Street & Saasveld Road intersection;
- N9 Knysna Street & Road 1; and
- Saasveld Road & Meyer Street.

Figure 3: Secondary Study Area (source: Google)

3. BACKGROUND INFORMATION

3.1 Existing Roads

National Route N9 is a Class 2 Major Arterial under the jurisdiction of the South African National Road Agency Limited. In the vicinity of Saasveld Road it comprises of two lanes per direction. It experiences moderate traffic flows during peak hours, and operates at an acceptable Level of Service.

Saasveld Road is a Class 3 Minor Arterial, extending from Loerie Park to the north of Wilderness and Hoekwil. The road comprises of one lane per direction in the vicinity of the subject site. It experiences low traffic flows during peak hours, and operates at an acceptable Level of Service.

Meyer Street is a Class 4 Urban Collector, serving the suburb of Loerie Park. The road comprises of one lane per direction in the vicinity of the subject site. It experiences low traffic flows during peak hours, and operates at an acceptable Level of Service.

Kraaibosch Way is a Class 4 Urban Collector, designed to predominantly serve the Kraaibosch development. The road comprises of one lane per direction. It experiences low traffic flows during peak hours, and operates at an acceptable Level of Service.

3.2 Public Transport Facilities

George is currently served by three phases of the George Integrated Public Transport Network (George IPTN). As Kraaibosch and George Campus is rolled out, it is anticipated that these developments will be well served by the George IPTN. Refer to Figure 4.

Figure 4: Public Transport Facilities (source: George Municipality)

3.3 Non-Motorized Transport Facilities

The George Campus design focuses on pedestrian accessibility and mobility, providing green corridors linking all components of the development. Refer to Figure 5.

Figure 5: NMT Facilities (source: Aurecon)

The George CITP (Iliso 2014/15) makes reference to planned NMT infrastructure projects within George. These include the implementation of kerb drops for pedestrians along Knysna Road. The planned NMT Network is shown in Figure 6. It is recommended that the George NMT Network be revisited as and when the proposed development is approved.

3.4 Planned Changes to Transportation Facilities

It is proposed that the George Campus be served by an extended George IPTN, with the provision of bus stops within the Campus grounds. The GIPTN Unit was consulted regarding this proposal, with the following inputs being provided:

- Based on the information provided regarding the proposal, there are two routes that fall within the vicinity of the accesses to the proposed development:
 - a) Route 24 (CBD Loerie Park Garden Route Mall) refer to attached KMZ (Phase 1 Routes), and
 - b) Proposed Route: NMU CBD that forms part of Phase 6 of the GIPTN project that has not yet been rolled out. (refer to Figure 7)
- Route 24 runs via Van Kervel Street the closest to the proposed Access 1 referred to in the application (approximately 560m distance) with Stops 194 and 193 located near the intersection of Van Kervel and Meyer St being the closest bus stops of Route 24 and approximately 520m from the proposed NMU-CBD Route and proposed bus stops 202 and 203 located at the intersection of Saasveld Rd and Meyer Street intersection. Access 2 is proposed approximately 170m from this intersection. Access 3 is further East about 800m from the proposed stop 202 (no bus stops are proposed by the GIPTN at this stage near the vicinity of Access 3).
- It is important to note that the abovementioned routes were never intended to cater for the development in question. In order for the GIPTN to plan services to the development proposed, it is important that the number of anticipated public transport trips are provided. Furthermore, information on roads proposed and earmarked specifically for public transport, needs to be provided for further assessment and comment.

Figure 7: Planned George IPTN Phase 6 (source: Aurecon)

Taking into consideration the inputs provided by the GIPTN Unit, it is recommended that a revised Phase 6 of the George IPTN be used to service the needs of the George Campus.

3.5 Site Access

The site will be served by three accesses, as follows:

- Access 1 along Stander Street (opposite Arthur Bleksley Street);
- Access 2 along Saasveld Road (between Meyer Street & Access 3); and
- Access 3 along Saasveld Road (opposite Road 1).

Figure 8: Site Access (source: Aurecon)

The access spacing requirements were derived from the WCG Access Management Guidelines (2020). This requires a 260-metre spacing between two uncontrolled full intersections along Class 3 roads within a semi-rural area.

Access 1 is situated at an existing intersection, and is therefore not evaluated.

Access 2 along Saasveld Road is situated 300 metres to the east of Meyer Street. Access 3 along Saasveld Road is situated 600 metres to the east of Access 2. Both accesses therefore comply with the access spacing requirements.

4. OTHER PLANNING AUTHORITIES

Saasveld Road falls under the jurisdiction of the Western Cape Department of Transport. As such, they would need to be included in the approval process.

5. TRAFFIC DEMAND ESTIMATION

5.1 Assessment Year

The traffic assessment will be undertaken for a 2024 and 2029 design year. A linear buildout of the development has been assumed, as set out in Table 1.

Phase	Year	Assumed Build-Out	University (students)	Housing (units)	Commercial (sqm GLA)	Hotel (rooms)
Phase 1	2024	50%	4 000	1 652	64 650	173
Phase 1+2	2029	100%	8 000	3 303	129 300	345

Table 1: Development Phasing (Cumulative)

5.2 Assessment Hour

The traffic assessment must be undertaken for the hours during which the combined effect of background and development traffic will result in the highest traffic demand. Taking into consideration the planned mixed-use development, it is deemed appropriate for the Weekday AM and PM Peak Hours to be analysed.

5.3 Background Traffic Demand Estimation

5.3.1 Traffic Counts

Manual classified intersection traffic counts were undertaken as part of this project assignment. Details of the traffic survey are provided below:

- Date counted July 2019
- Day Normal Weekdays
- Congestion levels
 Low
- Enumerator SMEC

5.4 Peak Hour

A common peak hour was identified for the intersections under discussion, as follows:

- Weekday AM Peak Hour 07h00 08h00
- Weekday AM Peak Hour 16h15 17h15

5.5 Traffic Growth

A traffic growth rate is applied to background traffic in order to determine the anticipated increase in Base Year traffic by a predefined Design Year.

The COTO TMH 17 South African Trip Data Manual dated September 2012 provides typical growth rates to be used for growth areas based on the existing/anticipated rate of growth. Refer to Table 2.

DEVELOPMENT AREA	GROWTH RATE	
Low Growth Areas	0% - 3%	
Average Growth Areas	3% - 4%	
Above Average Growth Areas	4% - 6%	
Fast Growing Ares	6% - 8%	
Exceptionally High Growth Areas	> 8%	

Table	2:	Typical	Growth	Rates
-------	----	---------	--------	-------

Taking into consideration the location of the subject site, a compounded traffic growth rate of 2.0% was applied to the 2019 Base Year Traffic in order to derive 2024 and 2029 Design Year traffic flows.

Taking into consideration the close proximity of the other development parcels forming part of the Kraaibosch development, it was deemed appropriate to only apply a growth rate to N9 Knysna Street traffic.

5.6 Existing exercised land-use rights

Where a development has existing land-use rights that have been exercised and where a growth rate is applied, the trip generation of the exercised rights must be estimated and subtracted from the traffic counts before any growth is applied.

No existing exercised land-use rights apply to this development.

5.7 Trip Generation by Other Developments

Other developments as well as future potential development in the area must be taken into account in the estimation of future background traffic. The following developments have been noted:

5.7.1 Kraaibosch Development

The Roads Master Plan for the Kraaibosch Development dated September 2018 includes several land parcels and development land therein. The location of each development is shown in Figure 9.

Figure 9: Other Developments (source SMEC)

The trip generation potential of the other developments is set out in Table 3.

The anticipated trip generation for the other developments total 7 738 private vehicle trips during the Weekday AM Peak Hour.

With reference to the Kraaibosch Roads Master Plan and Cost Apportionment (Revision 4) dated September 2018, it is not feasible to analyse the operational analysis of the infrastructure until the site development plans have reached a certain level of finality. As such, this development impact is not considered as part of the current project assignment.

Taking into consideration the trip generation potential of the Kraaibosch area in close proximity to the Campus development, it would be advantageous to assess the combined impact of these developments on the greater transport network, preferably with the use of a regional travel demand model. This would ensure that the required public transport services and transport infrastructure are put in place to serve the future travel demand at appropriate levels of service.

DODTION	IN / OU				RIPS	-	
PORTION	PROPOSED DEVELOPMENT	TRIP RATE		LIT		RATED	TOTAL
	43 High Income Units	1.5	IN 25%	OUT 75%	IN 37	0UT 110	146
195/62	5.2 ha Group Housing Units @ 55 du/ha	1.0	25%	75%	78	234	312
10510							
195/3	30.5 ha Retirement Units @ 20du/ha	0.15	25%	75%	23	69	92
195/88	144 Group Housing Units	1.1	25%	75%	40	119	159
	124 High Income Units	1.5	25%	75%	46	140	186
195/21	20 ha High Income Units @ 15du/ha	1.5	25%	75%	112	338	450
	8.76 ha Retirement @ 35 du/ha	0.15	35%	65%	16	30	46
	2.27 ha Group Housing units @ 55 du/ha	1.1	25%	75%	35	104	138
195/54 & 55	1.60 ha Flats @ 55du/ha	1.1	25%	75%	24	73	97
100104 00 00	2.76 ha Suburban Medical Centre	7/100m ²	55%	45%	1061	868	1929
	6.05 ha Private Hospital (50% coverage)	2.4/100m ²	55%	45%	399	327	726
	1.54 ha Shopping Centre	224.5 GLA-0.34 / 100m ²	50%	50%	653	653	1306
	171 Retirement Units	0.15	35%	65%	9	17	26
195/52	13 Retirement Units	0.15	35%	65%	1	1	2
	1.43 ha Group Housing Units @ 15 du/ha	1.1	25%	75%	6	18	24
	0.36 ha Sport/Recreation	40/ha	50%	50%	7	7	14
	156 Group Housing Units	1.1	25%	75%	43	129	172
	0.75 ha Community Orientated Uses	40/ha	50%	50%	15	15	30
195/5	289 Retirement Units	0.15	25%	75%	11	32	43
	40 High Income Units	1.5	25%	75%	15	45	60
195/6 & 57	343 Retirement Units	0.15	25%	75%	13	39	52
195/1	124 Group Housing units	1.1	25%	75%	34	102	136
195/56	14.00 ha Vacant land @ 15 du/ha	1.1	25%	75%	58	173	231
195/53	13.60 ha Vacant land @ 15du/ha	1.1	25%	75%	56	168	224
	6.04 ha Sport/Recreation/Education	40/ha	50%	50%	121	121	242
Riding Club	7.75 ha Community Orientated Uses	40/ha	50%	50%	155	155	310
	9.86 ha Group Housing @ 15 du/ha	1.1	25%	75%	41	122	163
	5 High Income units	1.5	25%	75%	2	6	8
195/319	0.74 ha Group Housing @ 60du/ha	1.1	25%	75%	12	37	49
	5 High Income units	1.5	25%	75%	2	6	8
195/320	0.75 ha Group Housing @ 60du/ha	1.1	25%	75%	13	38	50
Section A	18.60 ha Vacant land @ 15du/ha	1.1	25%	75%	77	230	307
	•				-	TOTAL	7738

Table 3: Other Development Trip Generation

5.8 Trip Generation

Trip generation rates are measured in units of trip ends, with either an origin or a destination at the development. It is the sum of traffic to or from a development.

The Trip Generation Rates for the planned land use types were obtained from the COTO TMH 17 South African Trip Data Manual dated September 2012.

The trip generation potential of Phase 1 of the George Campus is shown in Table 4.

			Trip Total T Generation			Trips	
Land Use	Unit Rate		te	AM		PM	
		АМ	РМ	In	Out	In	Out
Hotel (rooms)	173	0.5	0.5	52	35	48	39
University (students)	4 000	0.2	0.2	640	160	240	560
Shopping Centre (sqm GLA)	64 650	0.6	3.0	330	178	1438	1438
Total				1 022	372	1 725	2 037
				13	94	3 7	62

Table 4: Trip Generation – Phase 1

Based on the size of the Phase 1 retail component, a site-specific size adjustment factor of 1.308 applies.

The trip generation potential of Phase 1+2 of the George Campus is shown in Table 5.

		Tri Gener	•		Tota	Trips	
Land Use	Unit Rate		te	AM		PM	
		АМ	РМ	In	Out	In	Out
Hotel (rooms)	345	0.5	0.5	104	69	95	78
University (students)	8 000	0.2	0.2	1 280	320	480	1 120
Shopping Centre (sqm GLA)	129 300	0.6	3.0	584	314	2 546	2 546
Total				1 968	703	3 121	3 743
				2 6	571	6 86	64

Table 5: Trip Generation – Phase 1+2

Based on the size of the Phase 1+2 retail component, a site-specific size adjustment factor of 1.158 applies. Refer to COTO TMH 17.

It is anticipated that Phase 1 of the planned development would generate 1 394 and 3 762 new vehicular trips during the Weekday AM and PM Peak Hours respectively, and with Phase 1+2 it would generate a total of 2 671 and 6 864 new vehicular trips during the Weekday AM and PM Peak Hours respectively.

Taking the above onto consideration, it would be essential that the GIPTN planning take cognisance of the high public transport demand to be generated by the proposed development. It would be opportune to implement the required public transport services before the demand materialize, in order to ensure that the transport network is able to accommodate the anticipated travel demand.

5.9 Trip Reduction Factors

For the purpose of this study, the below trip reduction factors from the George Campus were applied, subject to approval by George Municipality.

Particular note should be taken of the Retail component, which is specifically designed for the needs of the Campus, as specified in the Proposed Zoning and Subdivision Application of Erf 464 George. As such, it was deemed appropriate to assess this component of the development serving very low car ownership.

The trip generation rates for a University already account for walk trips between accommodation and lecture rooms on campus, therefore no further trip reductions were applied for internal walk trips relating thereto. Trip reduction factors for transit and mixed use were applied to all the development components. Refer to Table 6.

		Adjustment								
Land Use	Mixed	Car Ow	nership	Transit	Factor					
	Use	Low	Very Low	Corridors	Factor					
University	20%			15%	0.68					
Hotel, Residential	20%			15%	0.68					
Shopping Centre	10%		60%	15%	0.31					

Table 6: Trip Reduction Factor

Taking into consideration the trip reduction factors being applied, the revised vehicular trip generation potential for Phase 1 is shown in Table 7.

	Trip Generation		Total Trips				
Land Use	Unit	Unit Rate		AM		PM	
		AM	PM	In	Out	In	Out
Hotel (rooms)	173	0.5	0.5	35	24	32	26
University (students)	4 000	0.2	0.2	435	109	163	381
Shopping Centre (sqm GLA)	64 650	0.6	3.0	101	54	440	440
Total				571	187	635	847
				75	58	1 48	33

Table 7: Revised Vehicular Trip Generation – Phase 1

Similarly the revised vehicular trip generation potential for Phase 1+2 is shown in Table 8.

Table 8: Revised Vehicular Trip Generation – Phase 1+2

			Trip Generation		Total Trips			
Land Use	Unit	Unit Rate		AM		РМ		
		AM	PM	In	Out	In	Out	
Hotel (rooms)	345	0.5	0.5	70	47	65	53	
University (students)	8 000	0.2	0.2	870	218	326	762	
Shopping Centre (sqm GLA)	129 300	0.6	3.0	179	96	779	779	
Total				1 119	361	1 170	1 593	
			14	80	2 7	63		

It is anticipated that Phase 1 of the planned development would generate 758 and 1 483 new vehicular trips during the Weekday AM and PM Peak Hours respectively, and with Phase 1+2 it would generate a total of 1 480 and 2 763 new vehicular trips during the Weekday AM and PM Peak Hours respectively.

The trip reduction factors associated with the proximity of a public transport corridor in relation to the planned development, provides an indication of the potential public transport mode share. As such, the anticipate transit demand associated with the planned development is shown in Table 9.

	Total PT Trips						
Land Use	A	м	PM				
	In	Out	In	Out			
Hotel (rooms)	16	10	14	12			
University (students)	192	48	72	168			
Shopping Centre (sqm GLA)	88	47	382	382			
Total (vehicle trips)	295	106	468	561			
Total (person trips)	443	158	702	842			

Table 9: Public Transport Demand – Phase 1+2

Taking into consideration a vehicle occupancy of 1.50, it is our submission that Phase 1+2 of the planned development could potentially generate 443 and 842 peak direction public transport person trips during the Weekday AM and PM Peak Hours respectively.

As a result of the size and extent of the Retail component forming part of the development, it would be advantageous for measures to be implemented to ensure that the Waterfront commercial area serves predominantly students as planned, and not the general public.

5.10 Trip Types

For the purpose of this study, it is assumed that all trips associated with the proposed development are classified as primary trips, therefore new trips on the surrounding road network.

The Retail component is specifically designed for the needs of the Campus, therefore no trips relating thereto were classified as pass-by or diverted trips.

6. TRIP DISTRIBUTION AND ASSIGNMENT

6.1 Trip Distribution – Site Access

The location and extent of individual land use parcels within the development will define the access to be used in serving those components. With this in mind, the anticipated trip distribution is shown in Table 10.

Component	Access 1	Access 2	Access 3
University	40%	30%	30%
Hotel		100%	
Retail	10%	40%	50%

Table 10: Trip Distribution: Site Access

6.2 Trip Distribution – External

External trip distribution was estimated manually, based on the principles of the gravity model and with knowledge of local conditions. Refer to Table 11.

Direction	Destination	Route	Distribution
SW	George CBD	N9 Knysna Street	40%
W	George CBD	Stander Street	10%
W	George Bodorp	Stander Street	20%
S	Rosemore	Kraaibosch Way	20%
E	N2	N9 Knysna Street	10%

Table 11: Trip Distribution: External

Based on the trip generation potential of the subject site, development trip distribution summary is set out in Table 12.

Direction	Route	Percent	AM In	AM Out	PM In	PM Out
SW	N9 Knysna Street	40%	448	144	468	637
W	Stander Street	30%	336	108	351	478
S	Kraaibosch Way	20%	224	72	234	319
E	N9 Knysna Street	10%	112	36	117	159
Total		100%	1119	361	1170	1593

Table 12: Development Trip Distribution

6.3 Traffic Assignment

Traffic assignment involves determining the percentage of traffic that will use specific routes in the network. The traffic assignment is made with consideration to logical routings, available roadway capacity, right-turn movements, travel times and other factors. Refer to Figure 10.

Figure 10: Traffic Assignment

20

0			
į			
)			
2			
C			

- 1

(10%)	(30%)		
(10%)	(30%)		
ţ	ŧ	Ļ	Saasveld Rd
t			-
+			
÷			

7. TOTAL TRAFFIC DEMAND

7.1 Figures

The following information on traffic demand is provided for each horizon year and peak hour that is assessed:

- Figure 11 2019 Base Year Traffic;
- Figure 12 Phase 1 Development Trips;
- Figure 13 Phase 1+2 Development Trips;
- Figure 14 2024 Design Year + Phase 1 Development Trips: and
- Figure 15 2029 Planning Year + Phase 1+2 Development Trips.

Figure 11: 2018 Base Year Traffic

Figure 12: Phase 1 Development Trips

Figure 13: Phase 1+2 Development Trips

			N9 Knysna St							Meyer St																	
100 Weekda	ay AM							(5)	5	÷	(5)	(13)	(127)														
■ N (100) Weekda	ау РМ							(0)	0	-	5	14	114														
						Art	tur Bleksley St	(12)	14	7	ţ	ŧ	Ļ	Access 1													
								'n	t	ŕ	£	37	(169)														
								5	£	57	+	0	(0)														
								(16)	(16)	(64)	~	19	(85)														
										Meyer St							Access 2						Access 3				
					(1237)	(336)		(76)	60	ح	(06)		(40)	(12	27) 1	14 -		(169)		(85)	(64)	57	ح	(85)	(254)	(0)	
					707	384		(166)	169	+	24		46	(6	4) 5	57 →		37		19	(0)	0	*	19	56	0	
					Ŧ	Ļ	Saasveld Rd				ţ		Ļ					ţ		Ļ	(0)	0	7	Ą	ŧ	Ļ	_Saasveld Rd
		t	4	۰.	265	(322)					۴.	26	(105)					4	57	(64)	٩	t	ţ,	£	0	(0)	
		1315	323								4	83	(302)					+	19	(85)	57	114	0	-	0	(0)	
		(366)	(198)	÷	301	(163)															(64)	(127)	(0)	÷	0	(0)	
	(54)	79	ھ	(84)	(277)	(211)																					
	(144)	146	+	58	815 (171 (
Destes Dest	(22)	62	7	4	ŧ	Ļ																					
Protea Park	'n	t	ţ	٠.	152	(206)	Kraaibosch W	ay																J			
	31	911	95	+	64	(209)																					
	(46)	(924)	(109)	÷	73	(109)																					
			N9 Knysna St	I																							

Figure 14: 2025 Design Year + Phase 1 Development Trips

Page | 25

			N9 Knysna St							Meyer St																		
100 Weekday	y AM							(5)	5	÷	(5)	(13)	(234)															
(100) Weekday	y PM							(0)	0	→	5	14	224															
						Ar	tur Bleksley St	(12)	14	7	ţ	ŧ	Ļ	Access 1														
								'n	t	ŕ	£	72	(319)															
								5	5	112	+	0	(0)															
								(16)	(16)	(117)	÷	36	(159)															
										Meyer St							Access 2							Access 3				
					(1365)	(470)		(129)	115	ھ	(164)		(40)	(1	14)	224	÷	(319)		(159)	(5	57)	112	æ	(159)	(478)	(0)	
					780	521		(273)	279	→	41		135	(1	17)	112	⇒	72		36	(0)	0	→	36	108	0	
					ŧ	Ļ	Saasveld Rd				ţ		Ļ					ţ		Ļ	(0)	0	7	ţ	Ŧ	Ļ	_Saasveld R
		t	ţ,	۰.	308	(508)					4	43	(179)					4	112	(117)		4	t	r	۰.	0	(0)	
		1452	350								+	135	(526)					÷	36	(159)			224	0	+	0	(0)	
		(1098)	(225)	÷	310	(201)															Ĩ	(711)	(234)	(0)	÷	0	(0)	
	(54)	79	÷	(84)	(1079)	(292)																						
	(251)	256	→	58	006	253																						
Protea Park	(22)	62	7	4	ŧ	Ļ	Kraaibosch W	/ay																				
	4	t	ŕ	£	178	(318)																						
	31	1030	122	-	99	(359)																						
	(46)	(1043)	(136)	÷	82	(147)																						
			N9 Knysna St																									
								Figur	e 15: 2	2035	Planni	ng Yea	ar + Pha	ise 1+2 [Deve	lopm	ent T	rips										

Page | 26

8. TRAFFIC IMPACT ASSESSMENT SCENARIOS

The following scenarios were analysed as part of the Traffic Impact Assessment:

- 2019 Base Year Traffic;
- 2024 Design Year + Phase 1 Development Trips;
- 2029 Planning Year + Phase 1+2 Development Trips; and
- 2029 Planning Year + Phase 1+2 Development Trips + Other Development Trips.

The following sub-sections set out the analysis findings.

8.1 Intersection of N9 Knysna Street and Saasveld Road

The intersection of N9 Knysna Street and Saasveld Road is a signalised T-junction. The north approach has a short left-turn slip-lane plus two through lanes, the east approach has a left-turn lane plus a right-turn lane, and the south approach has two through lanes plus a short right-turn lane. Refer to Figure 16.

Figure 16: Layout: N9 Knysna Street & Saasveld Road

2019 Base Year Traffic

Taking into consideration the 2019 Base Year traffic flows, the intersection currently operates at Level of Service B during both the Weekday AM and PM Peak Hours, with an average delay of approximately 12 seconds.

2024 Design Year + Phase 1 Development Trips

Taking into consideration the 2024 Design Year plus Phase 1 Development traffic flows, the intersection will continue to operate at Level of Service B during both the Weekday AM and PM Peak Hours, with an average delay of approximately 13 seconds.

2029 Planning Year + Phase 1+2 Development Trips

Taking into consideration the 2029 Design Year plus Phase 1+2 Development traffic flows, the intersection will operate at Level of Service B and C during the Weekday AM and PM Peak Hours, with an average delay of approximately 13 and 22 seconds respectively.

It is concluded that the existing intersection configuration would be suitable to accommodate the anticipated Phase 1+2 Development traffic flows at an acceptable Level of Service by a 2029 Planning Year.

2029 Planning Year + Phase 1+2 Development Trips + Other Development Trips

It is recommended that further intersection analysis be undertaken with consideration of the intersection capacity requirements of the full Kraaibosch Development.

8.2 Intersection of N9 Knysna Street and Kraaibosch Road

The intersection of N9 Knysna Street and Kraaibosch Road is a signalised four-leg intersection. The north approach has a short left-turn slip-lane plus two through lanes plus two short right-turn lanes, the east approach has a short left-turn slip-lane plus two through lanes plus a right-turn lane, the south approach has a short left-turn slip-lane plus two through lanes plus two short right-turn lanes, and the west approach has a short left-turn slip-lane plus two through lanes plus a right-turn lane. Refer to Figure 17.

Figure 17: Layout: N9 Knysna Street & Kraaibosch Road

2019 Base Year Traffic

Taking into consideration the 2019 Base Year traffic flows, the intersection currently operates at Level of Service B during both the Weekday AM and PM Peak Hours, with an average delay of approximately 19 seconds.

2024 Design Year + Phase 1 Development Trips

Taking into consideration the 2024 Design Year plus Phase 1 Development traffic flows, the intersection will operate at Level of Service B and C during the Weekday AM and PM Peak Hours, with an average delay of approximately 19 and 23 seconds respectively.

2029 Planning Year + Phase 1+2 Development Trips

Taking into consideration the 2029 Design Year plus Phase 1+2 Development traffic flows, the intersection will operate at Level of Service C during both the Weekday AM and PM Peak Hours, with an average delay of approximately 29 seconds.

It is concluded that the existing intersection configuration would be suitable to accommodate the anticipated Phase 1+2 Development traffic flows at an acceptable Level of Service by a 2029 Planning Year.

2029 Planning Year + Phase 1+2 Development Trips + Other Development Trips

It is recommended that further intersection analysis be undertaken with consideration of the intersection capacity requirements of the full Kraaibosch Development.

8.3 Intersection of Saasveld Road and Meyer Road

The intersection of Saasveld Road and Meyer Road is a priority-controlled T-junction, with Meyer Road being under stop control. The north approach has one lane serving left- and right-turn movements, the east approach has a single lane serving through and right-turn movements, and the west approach has a single lane serving left-turn and through movements. Refer to Figure 18.

Figure 18: Layout: Saasveld Road & Meyer Road

2019 Base Year Traffic

Taking into consideration the 2019 Base Year traffic flows, the critical movements under stop control currently operate at Level of Service A during both the Weekday AM and PM Peak Hours, with an average delay of approximately 8 seconds.

2024 Design Year + Phase 1 Development Trips

Taking into consideration the 2024 Design Year plus Phase 1 Development traffic flows, the critical movements under stop control will continue to operate at Level of Service A during both the Weekday AM and PM Peak Hours, with an average delay of approximately 9 seconds.

2029 Planning Year + Phase 1+2 Development Trips

Taking into consideration the 2029 Design Year plus Phase 1+2 Development traffic flows, the intersection will operate at Level of Service F during both the Weekday AM and PM Peak Hours, with significant delays being experienced.

It is our submission that intersection upgrades would be required at this point in time, in order to accommodate the anticipated Phase 1+2 Development traffic flows at an acceptable Level of Service. It is proposed to convert the intersection into a roundabout with one circulation lane. Refer to Figure 19.

Figure 19: Proposed Layout: Saasveld Road & Meyer Road

Taking into consideration the conversion of the intersection to a roundabout, the critical movements under yield control will operate at Level of Service B during both the Weekday AM and PM Peak Hours, with an average delay of approximately 10 seconds

It is concluded that the proposed intersection configuration would be suitable to accommodate the anticipated Phase 1+2 Development traffic flows at an acceptable Level of Service by a 2029 Planning Year.

8.4 Access 1 and Meyer Road

Access 1 and Meyer Road is planned as a roundabout with one circulating lane. Refer to Figure 20.

Figure 20: Layout: Access 1 & Meyer Road

2029 Planning Year + Phase 1+2 Development Trips

Taking into consideration the 2029 Design Year plus Phase 1+2 Development traffic flows, the intersection will operate at Level of Service A and B during the Weekday AM and PM Peak Hours, with an average delay of 9 and 10 seconds respectively.

It is concluded that the proposed access configuration would be suitable to accommodate the anticipated Phase 1+2 Development traffic flows at an acceptable Level of Service by a 2029 Planning Year.
8.5 Access 2 and Saasveld Road

Access 2 and Saasveld Road is planned as a roundabout with one circulating lane. Refer to Figure 21.

Figure 21: Layout: Access 2 & Saasveld Road

2029 Planning Year + Phase 1+2 Development Trips

Taking into consideration the 2029 Design Year plus Phase 1+2 Development traffic flows, the intersection will operate at Level of Service A and B during the Weekday AM and PM Peak Hours, with an average delay of 9 and 10 seconds respectively.

It is concluded that the proposed access configuration would be suitable to accommodate the anticipated Phase 1+2 Development traffic flows at an acceptable Level of Service by a 2029 Planning Year.

8.6 Access 3 and Saasveld Road / Kraaibosch Road

Access 3 and Saasveld Road / Kraaibosch Road is planned as a roundabout with one circulating lane. Refer to Figure 22.

Figure 22: Layout: Access 1 & Meyer Road

2029 Planning Year + Phase 1+2 Development Trips

Taking into consideration the 2029 Design Year plus Phase 1+2 Development traffic flows, the intersection will operate at Level of Service A and B during the Weekday AM and PM Peak Hours, with an average delay of 9 and 12 seconds respectively.

It is concluded that the proposed access configuration would be suitable to accommodate the anticipated Phase 1+2 Development traffic flows at an acceptable Level of Service by a 2029 Planning Year.

8.7 Analysis Summary

A summary of the analysis outputs is provided in Table 13.

Scenario	2019 Base Year	2024 Design Year + Phase 1	2029 Design Year + Phase 1+2	2029 Design Year + Phase 1+2 With Upgrades
N9 Knysna Street & Saasveld Road	В/В	В/В	в / С	-
N9 Knysna Street & Kraaibosch Road	В/В	В/С	с/с	-
Saasveld Road & Meyer Road	A / A	A / A	F / F	В / В
Access 1 & Meyer Road	-	-	-	А / В
Access 2 & Saasveld Road	-	-	-	А / В
Access 3 & Saasveld Road / Kraaibosch Road	-	-	-	А/В

Table 13: Analysis Summary (AM / PM)

9. **PROPOSED IMPROVEMENTS**

The following transport improvements are proposed as part of the planned development:

2024 Design Year:

• Phase 6 (revised) of the George IPTN to serve the proposed development.

2029 Planning Year:

- Phase 6 (revised) of the George IPTN to serve the proposed development; and
- Convert the Saasveld Road & Meyer Road intersection to a roundabout with one circulating lane.

Note should be taken that the above road improvements are based on the land use type and function. Particular focus is drawn to the Retail component, which would predominantly serve students, and not the general public. Should the focus of the retail development change, this TIA and its recommendations would no longer apply.

10. SITE TRAFFIC ASSESSMENT

A Site Traffic Assessment did not form part of this project assignment. As and when the TIA is approved and a Site Development Plan has been developed, the Site Traffic Assessment will address on-site operations including internal road layout, parking, etc.

11. CONCLUSIONS AND RECOMMENDATIONS

SMEC South Africa (Pty) Ltd was appointed by George Municipality to conduct a Traffic Impact Assessment for the proposed George Campus Development. The site is bound by the Garden Route Dam to the north and Madiba Drive to the south. Refer to Figure 1.

The site measures approximately 118 hectares in extent. The anticipated composition of the development is a Campus catering for 8 000 students, a Waterfront commercial development of 129 300 square metres Gross Lettable Area (GLA), and a Hotel of 34 500 square metres GLA (assumed to be 345 rooms). The Campus component will include residential units for 303 lecturers and 3 009 students.

For the purpose of this TIA it was assumed that the development will be 50% implemented over 5 years by 2024, and 100% within 10 years by 2029It is anticipated that the development will be 100% implemented over 20 years by 2035, with 80% being built out within 10 years by 2025.

George is currently served by three phases of the George Integrated Public Transport Network (George IPTN). As Kraaibosch and George Campus is rolled out, it is anticipated that these developments will be well served by the George IPTN.

It would be essential that the GIPTN planning take cognisance of the high public transport demand to be generated by the proposed development. It would be opportune to implement the required public transport services before the demand materialize, in order to ensure that the transport network is able to accommodate the anticipated travel demand. Taking into consideration the inputs provided by the GIPTN Unit, it is recommended that a revised Phase 6 of the George IPTN be used to service the needs of the George Campus.

It is recommended that the George NMT Network be revisited as and when the proposed development is approved.

The site will be served by three accesses, as follows:

- Access 1 along Stander Street (opposite Arthur Bleksley Street);
- Access 2 along Saasveld Road (300 metres east of Meyer Street); and
- Access 3 along Saasveld Road (600 metres east of Access 2, and opposite Road 1).

The George Campus design focuses on pedestrian accessibility and mobility, providing green corridors linking all components of the development.

It is anticipated that Phase 1 of the planned development would generate 758 and 1 483 new vehicular trips during the Weekday AM and PM Peak Hours respectively, and with Phase 2 it would generate a total of 1 480 and 2 763 new vehicular trips during the Weekday AM and PM Peak Hours respectively.

As a result of the size and extent of the Retail component forming part of the development, it would be advantageous for measures to be implemented to ensure that

the Waterfront commercial area serves predominantly students as planned, and not the general public.

The following transport improvements are proposed as part of the planned development:

2024 Design Year:

• Phase 6 (revised) of the George IPTN to serve the proposed development.

2029 Planning Year:

- Phase 6 (revised) of the George IPTN to serve the proposed development; and
- Convert the Saasveld Road & Meyer Road intersection to a roundabout with one circulating lane.

Note should be taken that the above road improvements are based on the land use type and function. Particular focus is drawn to the Retail component, which would predominantly serve students, and not the general public. Should the focus of the retail development change, this TIA and its recommendations would no longer apply.

Taking into consideration the trip generation potential of the Kraaibosch area in close proximity to the Campus development, it would be advantageous to assess the combined impact of these developments on the greater transport network, preferably with the use of a regional travel demand model. This would ensure that the required public transport services and transport infrastructure are put in place to serve the future travel demand at appropriate levels of service.

ANNEXURE A: TRAFFIC SURVEY DATA

				N9 K	inysna i	& Saas	veld								20	19	
								ekday	Coun	ts							
		AN	1 Peak						Peak					PM	Peak		
		218		292				67		75				110		121	
241		~ +	_	5		156		-	-	→		177	•	~ _		-	
	▲ \	-	•	,	00.4		-	-	•	7	110			-	•	7	4.00
640	→				294	1058	→			-	119	1120	→			+	166
	+			+	1191		+			+	1018		+			+	901
	+	+	→	+			+	+	→	+			+	+		+	
	Tin	no							Volun	no nor	Movem	ont					
_			_		South			East	Volui		North	ent		West		Γ	
	om		ō	1	2	3	4	5	6	7	8	9	10	11	12	Но	ourly
05			:15														
05			:30														
05			:45 :00														
06			:15	0	0	0	0	25	2	5	0	5	5	17	0	5	59
06			:30	0	0	0	0	40	4	6	0	3	0	23	0		35
06	:30	06	:45	0	0	0	0	63	5	13	0	11	11	57	0		95
06			:00	0	0	0	0	163	63	21	0	44	50	78	0		14
07			:15	0	0	0	0	473	158	82	0	69	112	121	0		670
07			:30 :45	0	0	0	0	243	50	81	0	20	54	125	0		167 712
07			:45	0	0	0	0	268 207	47 39	73 56	0	85 44	39 36	193 201	0		876
08			:15	0	0	0	0	234	39	39	0	36	34	159	0		400
08			:30	0	0	0	0	155	37	26	0	18	23	178	0		264
08		08	:45	0	0	0	0	148	16	19	0	31	33	148	0	1 9	954
08			:00	0	0	0	0	175	16	12	0	21	14	160	0		769
09			:15	0	0	0	0	171	22	27	0	11	22	136	0		619
09			:30	0	0	0	0	173	14	14	0	13	14	221	0		631
09			:45 :00	0	0	0	0	223 175	17 20	17 14	0	9 15	26 24	181 195	0		709 754
10			.00 :15	0	0	0	0	175	15	20	0	35	42	263	0		938
	:15		:30	0	0	0	0	196	17	11	0	17	24	247	0		000
10	:30	10	:45	0	0	0	0	235	16	31	0	5	13	189	0	2 (017
10	:45	11	:00	0	0	0	0	215	22	19	0	16	15	216	0	-	077
11			:15	0	0	0	0	226	19	26	0	18	43	400	0		236
11			:30	0	0	0	0	252	20	15	0	8	8	25	0		052
11 11			:45 :00	0	0	0	0	241 238	23 24	17 12	0	22 15	57 22	366 199	0		289 296
12			:15	0	0	0	0	265	24	12	0	3	22	222	0		125
12			:30	0	0	0	0	274	48	28	0	27	48	271	0		493
12			:45	0	0	0	0	245	24	42	0	13	35	194	0		320
	:45		:00	0	0	0	0	276	42	35	0	20	38	251	0	-	472
	:00		:15	0	0	0	0	229	35	29	0	23	34	198	0		459
-	:15		:30	0	0	0	0	262	55	6	0	24	50	275	0		435
13	:30 :45		:45 :00	0	0	0	0	135 323	27 57	42 18	0	64 6	50 50	229 196	0		429 417
-	:00		:15	0	0	0	0	254	41	72	0	63	37	214	0	_	550
	:15		:30	0	0	0	0	230	25	39	0	34	42	259	0		507
	:30		:45	0	0	0	0	220	35	49	0	31	52	275	0		622
	:45		:00	0	0	0	0	250	43	26	0	23	50	307	0		671
	:00		:15	0	0	0	0	257	28	48	0	27	34	200	0		584
	:15 :30		:30 :45	0	0	0	0	177 188	22 30	16 33	0	5 47	29 39	262 185	0		466 326
	.30 :45		:00	0	0	0	0	252	30 43	45	0	47	39	243	0		291
	:00		:15	0	0	0	0	291	27	47	0	35	24	156	0		277
	:15		:30	0	0	0	0	196	27	21	0	39	62	328	0	24	439
	:30		:45	0	0	0	0	221	44	37	0	23	39	240	0		521
	:45		:00	0	0	0	0	248	45	40	0	27	43	283	0	_	543
	:00		:15	0	0	0	0	236	50	23	0	21	33	269	0		5 95
	:15 :30		:30 :45	0	0	0	0	242	41	31	0	40	49	269	0		594 539
	:30 :45		:45 :00	0	0	0	0	227 158	34 35	41 20	0	44 35	44 33	159 168	0		302
	:00		:15	0	0	0	U	100	- 55	20	0	- 35	55	100	0		502 670
	:15		:30											<u> </u>		-	98

				Sa	asveld	& Mey	yer								20	19	
							We	ekday	Cour	nts							
		AN	1 Peak					Off	Peak					PM	Peak		
		2		23				2		12				2		20	
3	+	+	+	→		5	+	+	+	→		12	+	+	+	→	
55	→			+	7	29	⇒			+	5	39	→			+	20
	+			+	27		+			+	18		+			+	48
	+	+	→	+			+	+	→	+			+	+	⇒	+	
	Tir	ne			South		1	East	Volur	ne per	Moven North	nent	1	West		1	
Fro	om	т	о	1	2	3	4	5	6	7	8	9	10	11	12	Ho	urly
05:	:00	05	:15														
05:			:30														
05:			:45														
05: 06:		06	:00	0	0	0	0	2	1	0	0	1	0	0	0		4
06:			:30	0	0	0	0	1	0	0	0	0	0	1	0		6
06:	:30	06	:45	0	0	0	0	3	1	1	0	1	0	2	0	1	4
06:			:00	0	0	0	0	5	2	3	0	3	0	7	0		34
07:			:15	0	0	0	0	11	3	7	0	3	2	13	0		59 97
07:			:30 :45	0	0	0	0	6 3	2	5 5	0	1 0	0	6 18	0		87 07
07:			:00	0	0	0	0	5	1	7	0	1	1	16	0		18
08:	:00	08	:15	0	0	0	0	13	2	6	0	3	2	15	0	1	20
08:			:30	0	0	0	0	9	3	3	0	1	0	3	0		19
08:		08		0	0	0	0	6	1	3	0	2	0	11	0		14
08:			:00 :15	0	0	0	0	2	0	4	0	2	1	9 0	0		01 72
09:			:30	0	0	0	0	8	2	1	0	0	1	1	0		6
09:			:45	0	0	0	0	5	1	2	0	0	1	2	0	5	54
09:			:00	0	0	0	0	6	0	3	0	0	1	5	0		51
10:		10		0	0	0	0	2	2	7	0	0	1	11	0	-	62
10: 10:		10	:30	0	0	0	0	5 2	4	1	0	0	0	3 6	0		62 63
10:			:00	0	0	0	0	2	2	4	0	0	0	5	0		5 51
11:			:15	0	0	0	0	3	4	3	0	1	0	3	0	5	52
11:			:30	0	0	0	0	6	2	3	0	2	0	7	0	-	59
11:			:45	0	0	0	0	6	2	5	0	0	1	4	0		5
11: 12:			:00 :15	0	0	0	0	0	3	1 7	0	0	0	2	0		58 57
12:			:30	0	0	0	0	3	0	1	0	1	2	4	0		18
12:	:30	12	:45	0	0	0	0	1	3	2	0	2	1	3	0	4	12
12:			:00	0	0	0	0	5	4	4	0	0	1	3	0		53
13:			:15	0	0	0	0	3	2	2	0	0	1	4	0		52 58
13: 13:			:30 :45	0	0	0	0	4	1	4	0	0	1	76	0		68 63
13:		-	:00	0	0	0	0	7	1	4	0	1	0	12	0		/1
14:			:15	0	0	0	0	7	6	4	0	2	3	6	0	8	37
	:15		:30	0	0	0	0	4	3	3	0	0	1	11	0		92
14: 14:	:30		:45 :00	0	0	0	0	2	0	1	0	4	1	4	0		37
14:			:00	0	0	0	0	2	2	4	0	1	1	5 4	0		7 2
15:			:30	0	0	0	0	4	3	2	0	2	2	4	0		57
15:		15	:45	0	0	0	0	4	3	5	0	2	1	6	0		7 6
	:45		:00	0	0	0	0	7	2	5	0	0	1	11	0		37
16: 16:	:00		:15 :30	0	0	0	0	8	2	3	0	0	5	6	0		38 15
	:15 :30		:30 :45	0	0	0	0	19 10	7	6 5	0	1	2	9 7	0		24
	:45		:00	0	0	0	0	10	8	6	0	2	2	17	0		44
17:	:00	17	:15	0	0	0	0	5	0	5	0	3	3	5	0	1.	41
	:15		:30	0	0	0	0	6	6	2	0	1	0	5	0		17
17:			:45	0	0	0	0	3	1	8	0	0	0	13	0		12
17: 18:			:00 :15	0	0	0	0	0	2	1	0	0	1	4	0		74 53
10.	:15		:30	<u> </u>		<u> </u>		<u> </u>						1			33

				N9 Kn	ysna &	Kraai	bosch								20	19	
								ekday	Coun	ts							
		AN	1 Peak					Off	Peak					PM	Peak		
		124	27	64				65	20	62				79	40	67	
85	+	+	+	→		132	•	+	+	→		116		+	+	→	
738	- -	•	-		66	944	_ →			^	87	885	- -		•	, ,	77
58	+			- +	799	100	+			+	914	84	+			+	808
	÷	+	→	•	31		+	+	→	÷	41		+	+	→	-	46
	19	32 -	62	• •			64	35	30				54	17	22	-	
	Tir									ne per	Mover	ent	47				
Fro	h	т	o		South			East			North	-		West		Но	urly
				1	2	3	4	5	6	7	8	9	10	11	12	110	uriy
05: 05:			:15 :30														
05:			:45														
05:			:00														
06:		06		1	0	1	3	17	4	2	0	2	2	19	0		51
06: 06:			:30 :45	1	2 5	14 12	2	45 65	5 9	6 4	5 3	5 10	2	28 42	3		69 39
00:			:00	33	9	9	8	135	9 11	4	6	30	6	75	10		74
07:	:00	07	:15	22	9	15	6	238	13	16	10	37	7	131	10		37
07:			:30	20	6	21	10	226	9	16	5	46	23	191	12		604
07: 07:		07	:45 :00	18 19	8 9	17 9	6 9	187 148	19 25	14 18	7 5	21 20	38 17	237 179	20 16)26
07:			:15	19	6	6	5	155	14	10	5	20	17	166	17)87
08:	:15	08	:30	17	6	11	6	170	14	11	2	29	15	170	12	19	965
08:			:45	12	3	12	6	132	11	18	8	30	29	162	11		307
08: 09:			:00 :15	5 13	5	4 14	5	100	5 13	6	7	18 14	22 14	145	19		674 643
09:			:30	13	3 6	6	6 4	136 128	13	11 10	4 9	20	14	157 154	20 20		583
09:			:45	13	6	7	6	152	16	11	5	26	19	185	19		614
09:			:00	20	5	5	3	171	25	22	5	23	38	229	34		353
10: 10:			:15 :30	9 8	1 5	11 11	3 9	144 203	16 13	22 19	1 8	14 28	19 24	175 207	15 34		378)44
10:			:45	14	с 8	10	9 13	192	13	19	8 9	28	24 19	207	23		40
10:			:00	31	6	8	12	263	25	31	11	42	43	229	31		292
11:			:15	8	2	1	3	132	13	11	1	6	15	109	10		73
11:			:30	8	3	3	9	119	8	15	6	9	22	115	16		937
11: 11:			:45 :00	16 16	7 18	7	3 11	145 276	16 21	9 16	1	11 21	13 49	125 395	6 49		735 390
12:			:15	5	6	6	7	173	18	15	5	11	33	147	11)16
12:			:30	29	6	5	12	309	30	15	7	25	22	215	24		882
12:			:45	14	5	8	11	156	18	16	4	8	28	187	16		94
12: 13:			:00 :15	9 17	4	2	4 9	254 199	30 12	19 15	9 10	18 14	27 30	209 172	25 28		217 300
	:15		:30	28	7	7	8	228	12	20	6	14	29	243	25		233
13:			:45	16	3	7	8	220	20	14	4	13	28	146	11		252
13:			:00	16	8	6	4	225	22	8	3	19	18	183	17		71
14: 14:	:00 :15		:15 :30	24 19	8	7	12 10	204 192	16 13	7 10	7	29 16	20 25	208 228	25 27		218
14:			:45	30	2	7	11	221	32	12	5	35	43	289	41		881
14:			:00	15	5	7	6	192	19	6	4	17	18	143	13		297
15: 15:	:00		:15	14	9	12	2	188	19	11	5	25	23	224	41		303
15: 15:	-		:30 :45	6 16	4	7 5	11 5	194 173	23 23	13 4	5 1	22 16	22 13	175 176	21 18		249 972
15:			:00	11	10	7	11	201	18	9	4	25	23	188	17)51
16:	:00	16	:15	17	4	3	15	247	23	16	12	22	41	254	22		54
16:			:30	12	5	6	8	138	11	15	5	13	19	169	8		060
16: 16:			:45 :00	15 10	6 2	6 7	14 9	211 212	20 23	22 14	12 11	21 23	26 30	215 247	23 31		200 2 95
17:			:15	8	9	17	9 19	181	16	14	5	13	30	209	17		57
17:	:15	17	:30	5	3	10	6	97	10	6	4	5	6	87	11	1 9	998
17:			:45	32	5	27	29	296	32	26	1	32	32	312	30		261
17: 18:			:00 :15	14	1	5	5	137	15	4	0	11	22	131	8		995 157
	:15		:30														207

ANNEXURE B: DETAILED SIDRA OUTPUTS

Intersection of N9 Knysna Street & Saasveld Road

2019 Base Year

AM Peak Hour

Move	ment	Performa	nce -	Vehic	les							
Mov	Turn	Demand I	-lows	Deg.	Average		95% Back	of Queue	Prop.		Aver. No.	0
ID	Turri	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	v/c	sec		veh	m				km/h
South	: N9 Ki	nysna St										
2	T1	1254	3.0	0.566	7.1	LOS A	8.5	60.7	0.72	0.64	0.72	53.7
3	R2	309	3.0	0.594	13.9	LOS B	3.8	27.1	0.91	0.81	0.93	47.7
Approa	ach	1563	3.0	0.594	8.4	LOS A	8.5	60.7	0.76	0.67	0.77	52.4
East: \$	Saasve	eld Road										
4	L2	307	3.0	0.681	22.8	LOS C	6.1	43.8	0.97	0.87	1.09	42.7
6	R2	229	3.0	0.509	21.1	LOS C	4.2	29.9	0.92	0.80	0.92	43.6
Approa	ach	537	3.0	0.681	22.1	LOS C	6.1	43.8	0.95	0.84	1.02	43.1
North:	N9 Kr	nysna St										
7	L2	254	3.0	0.210	7.5	LOS A	1.2	8.8	0.45	0.67	0.45	52.6
8	T1	674	3.0	0.639	15.7	LOS B	6.3	45.5	0.94	0.82	1.01	47.7
Approa	ach	927	3.0	0.639	13.4	LOS B	6.3	45.5	0.81	0.78	0.85	49.0
All Vel	hicles	3027	3.0	0.681	12.4	LOS B	8.5	60.7	0.81	0.73	0.84	49.5

Move	ment	Performa	nce -	Vehic	les							
Mov	Turn	Demand I	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID	Turri	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	v/c	sec		veh	m				km/h
South	: N9 K	nysna St										
2	T1	948	3.0	0.351	4.5	LOS A	5.4	38.7	0.50	0.43	0.50	55.9
3	R2	175	3.0	0.394	13.4	LOS B	1.8	13.2	0.82	0.77	0.82	48.0
Approa	ach	1123	3.0	0.394	5.9	LOS A	5.4	38.7	0.55	0.49	0.55	54.5
East: \$	Saasve	eld Road										
4	L2	127	3.0	0.397	27.1	LOS C	3.0	21.3	0.94	0.77	0.94	40.7
6	R2	116	3.0	0.361	27.0	LOS C	2.7	19.2	0.93	0.77	0.93	40.8
Approa	ach	243	3.0	0.397	27.1	LOS C	3.0	21.3	0.94	0.77	0.94	40.7
North:	N9 Kr	nysna St										
7	L2	186	3.0	0.139	6.9	LOS A	0.8	5.8	0.33	0.64	0.33	53.0
8	T1	1179	3.0	0.666	12.9	LOS B	11.9	85.2	0.86	0.76	0.86	49.5
Approa	ach	1365	3.0	0.666	12.1	LOS B	11.9	85.2	0.79	0.74	0.79	50.0
All Vel	hicles	2732	3.0	0.666	10.9	LOS B	11.9	85.2	0.70	0.64	0.70	50.7

2024 Design Year + Phase 1 Development

AM Peak Hour

Move	ment	Performa	ince -	Vehic	les							
Mov	Turn	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID	Turri	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	v/c	sec		veh	m				km/h
South	: N9 K	nysna St										
2	T1	1384	3.0	0.625	7.4	LOS A	9.8	70.2	0.76	0.67	0.76	53.5
3	R2	340	3.0	0.672	15.0	LOS B	4.4	31.6	0.95	0.85	1.05	47.0
Appro	ach	1724	3.0	0.672	8.9	LOS A	9.8	70.2	0.80	0.71	0.82	52.1
East: 3	Saasve	eld Road										
4	L2	317	3.0	0.702	23.1	LOS C	6.4	45.8	0.97	0.89	1.13	42.6
6	R2	279	3.0	0.618	21.9	LOS C	5.3	38.2	0.95	0.84	1.01	43.2
Appro	ach	596	3.0	0.702	22.6	LOS C	6.4	45.8	0.96	0.86	1.07	42.9
North:	N9 Kr	nysna St										
7	L2	404	3.0	0.333	7.7	LOS A	2.1	15.2	0.49	0.69	0.49	52.4
8	T1	744	3.0	0.706	16.7	LOS B	7.4	52.8	0.96	0.88	1.10	47.1
Appro	ach	1148	3.0	0.706	13.5	LOS B	7.4	52.8	0.80	0.81	0.88	48.8
All Vel	nicles	3468	3.0	0.706	12.8	LOS B	9.8	70.2	0.82	0.77	0.88	49.2

Move	ment	Performa	nce -	Vehic	les							
Mov	Turn	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID	Turri	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	v/c	sec		veh	m				km/h
South	: N9 K	nysna St										
2	T1	1047	3.0	0.401	5.2	LOS A	6.5	46.6	0.54	0.47	0.54	55.3
3	R2	208	3.0	0.500	15.0	LOS B	2.5	17.8	0.90	0.79	0.90	47.0
Approa	ach	1256	3.0	0.500	6.8	LOS A	6.5	46.6	0.60	0.53	0.60	53.7
East: \$	Saasv	eld Road										
4	L2	172	3.0	0.707	28.9	LOS C	6.5	46.6	0.99	0.88	1.14	39.9
6	R2	339	3.0	0.707	28.9	LOS C	6.5	46.6	0.99	0.88	1.14	39.9
Approa	ach	511	3.0	0.707	28.9	LOS C	6.5	46.6	0.99	0.88	1.14	39.9
North:	N9 Kr	nysna St										
7	L2	354	3.0	0.264	7.2	LOS A	1.7	12.4	0.38	0.66	0.38	52.8
8	T1	1302	3.0	0.772	16.7	LOS B	15.4	110.7	0.93	0.89	1.05	47.1
Approa	ach	1656	3.0	0.772	14.7	LOS B	15.4	110.7	0.81	0.84	0.90	48.2
All Vel	hicles	3422	3.0	0.772	13.9	LOS B	15.4	110.7	0.76	0.73	0.83	48.5

2029 Planning Year + Phase 1+2 Development

AM Peak Hour

Move	ment	Performa	nce -	Vehic	les							
Mov	Turn	Demand I	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID	Turri	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	v/c	sec		veh	m				km/h
South	: N9 K	nysna St										
2	T1	1528	3.0	0.690	8.2	LOS A	11.7	83.9	0.80	0.73	0.82	52.9
3	R2	368	3.0	0.748	16.5	LOS B	5.1	36.7	0.98	0.90	1.19	46.1
Appro	ach	1897	3.0	0.748	9.8	LOS A	11.7	83.9	0.84	0.76	0.89	51.4
East: 3	Saasve	eld Road										
4	L2	326	3.0	0.723	23.5	LOS C	6.7	47.9	0.98	0.90	1.16	42.4
6	R2	324	3.0	0.719	23.5	LOS C	6.6	47.5	0.98	0.90	1.15	42.5
Appro	ach	651	3.0	0.723	23.5	LOS C	6.7	47.9	0.98	0.90	1.16	42.4
North:	N9 Kr	nysna St										
7	L2	548	3.0	0.448	8.1	LOS A	3.2	23.2	0.54	0.71	0.54	52.1
8	T1	821	3.0	0.779	18.5	LOS B	8.7	62.5	0.99	0.96	1.24	46.0
Appro	ach	1369	3.0	0.779	14.3	LOS B	8.7	62.5	0.81	0.86	0.96	48.3
All Vel	nicles	3917	3.0	0.779	13.7	LOS B	11.7	83.9	0.85	0.82	0.96	48.6

Move	ment	Performa	ance -	Vehic	les							
Mov	Turn	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID	Turri	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	v/c	sec		veh	m				km/h
South	: N9 K	nysna St										
2	T1	1156	3.0	0.414	6.7	LOS A	10.4	74.4	0.50	0.45	0.50	54.1
3	R2	237	3.0	0.613	24.3	LOS C	5.5	39.5	0.97	0.84	1.02	42.0
Appro	ach	1393	3.0	0.613	9.7	LOS A	10.4	74.4	0.58	0.51	0.59	51.5
East: 3	Saasve	eld Road										
4	L2	212	3.0	0.876	48.1	LOS D	16.8	120.8	1.00	0.99	1.33	33.0
6	R2	535	3.0	0.876	48.1	LOS D	16.8	120.8	1.00	0.99	1.33	33.0
Appro	ach	746	3.0	0.876	48.1	LOS D	16.8	120.8	1.00	0.99	1.33	33.0
North:	N9 Kr	nysna St										
7	L2	495	3.0	0.363	8.2	LOS A	4.5	32.5	0.41	0.68	0.41	52.2
8	T1	1437	3.0	0.861	27.4	LOS C	33.9	243.3	0.90	0.93	1.07	41.4
Appro	ach	1932	3.0	0.861	22.5	LOS C	33.9	243.3	0.77	0.87	0.90	43.7
All Vel	nicles	4071	3.0	0.876	22.8	LOS C	33.9	243.3	0.75	0.77	0.87	43.4

Intersection of N9 Knysna Street & Kraaibosch Road

2019 Base Year AM Peak Hour

Move	ement P	Performanc	e - Ve	hicles								
Mov	T	Demand F	lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID	Turn	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	v/c	sec		veh	m				km/h
South	: N9 Kn	ysna St										
1	L2	33	3.0	0.023	6.1	LOS A	0.1	0.7	0.17	0.58	0.17	53.6
2	T1	841	3.0	0.558	19.7	LOS B	11.7	83.8	0.86	0.74	0.86	45.4
3	R2	69	3.0	0.088	17.1	LOS B	0.6	4.5	0.74	0.69	0.74	46.2
Appro	ach	943	3.0	0.558	19.0	LOS B	11.7	83.8	0.82	0.73	0.82	45.7
East:	Kraaibo	sch Road										
4	L2	67	3.0	0.058	8.3	LOS A	0.6	4.3	0.36	0.63	0.36	52.0
5	T1	28	3.0	0.039	26.4	LOS C	0.4	2.9	0.86	0.60	0.86	42.0
6	R2	131	3.0	0.294	24.8	LOS C	3.4	24.4	0.83	0.74	0.83	42.3
Appro	ach	226	3.0	0.294	20.1	LOS C	3.4	24.4	0.70	0.69	0.70	44.7
North:	N9 Kny	ysna St										
7	L2	89	3.0	0.060	6.1	LOS A	0.3	2.0	0.17	0.59	0.17	53.6
8	T1	777	3.0	0.516	19.3	LOS B	10.6	75.9	0.84	0.72	0.84	45.7
9	R2	61	3.0	0.084	17.4	LOS B	0.5	3.9	0.76	0.69	0.76	46.0
Appro	ach	927	3.0	0.516	17.9	LOS B	10.6	75.9	0.77	0.71	0.77	46.3
West:	Protea	Park										
10	L2	83	3.0	0.085	8.9	LOS A	0.8	6.0	0.40	0.64	0.40	51.6
11	T1	34	3.0	0.051	26.6	LOS C	0.5	3.5	0.86	0.61	0.86	41.9
12	R2	65	3.0	0.419	41.0	LOS D	2.3	16.4	0.99	0.75	0.99	35.7
Appro	ach	182	3.0	0.419	23.7	LOS C	2.3	16.4	0.69	0.68	0.69	42.9
All Ve	hicles	2279	3.0	0.558	19.0	LOS B	11.7	83.8	0.78	0.71	0.78	45.6

PM Peak Hour

Move	ement P	Performance	e - Ve	hicles								
Mov	Turn	Demand F	lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID	Turn	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	v/c	sec		veh	m				km/h
South	: N9 Kn	ysna St										
1	L2	48	3.0	0.035	6.1	LOS A	0.2	1.2	0.13	0.58	0.13	53.7
2	T1	851	3.0	0.370	15.1	LOS B	12.8	91.7	0.61	0.54	0.61	48.2
3	R2	81	3.0	0.107	15.7	LOS B	0.8	6.0	0.57	0.67	0.57	47.1
Appro	ach	980	3.0	0.370	14.7	LOS B	12.8	91.7	0.58	0.55	0.58	48.3
East:	Kraaibo	sch Road										
4	L2	71	3.0	0.064	7.9	LOS A	0.7	5.2	0.26	0.61	0.26	52.4
5	T1	42	3.0	0.065	42.9	LOS D	1.0	7.0	0.88	0.63	0.88	35.4
6	R2	83	3.0	0.240	41.9	LOS D	3.7	26.5	0.86	0.73	0.86	35.4
Appro	ach	196	3.0	0.240	29.9	LOS C	3.7	26.5	0.65	0.67	0.65	40.0
North:	: N9 Kny	/sna St										
7	L2	122	3.0	0.082	6.0	LOS A	0.4	2.8	0.12	0.58	0.12	53.7
8	T1	932	3.0	0.405	15.4	LOS B	14.3	102.9	0.63	0.55	0.63	47.9
9	R2	88	3.0	0.114	15.3	LOS B	0.9	6.6	0.55	0.66	0.55	47.3
Appro	ach	1142	3.0	0.405	14.4	LOS B	14.3	102.9	0.57	0.56	0.57	48.5
West:	Protea	Park										
10	L2	57	3.0	0.057	8.1	LOS A	0.6	4.4	0.27	0.61	0.27	52.2
11	T1	18	3.0	0.030	42.6	LOS D	0.4	2.9	0.87	0.60	0.87	35.5
12	R2	23	3.0	0.233	62.8	LOS E	1.3	9.1	0.99	0.71	0.99	29.5
Appro	ach	98	3.0	0.233	27.3	LOS C	1.3	9.1	0.55	0.63	0.55	41.2
All Ve	hicles	2416	3.0	0.405	16.3	LOS B	14.3	102.9	0.58	0.57	0.58	47.3

2024 Design Year + Phase 1 Development AM Peak Hour

Move	ment F	Performanc		hicles								
Mov	Turn	Demand F	lows	Deg.	Average		95% Back	of Queue	Prop.	Effective	Aver. No.	
ID	-	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles_	Speed
		veh/h	%	v/c	sec		veh	m				km/h
South	N9 Kn	ysna St										
1	L2	33	3.0	0.023	6.2	LOS A	0.1	0.8	0.18	0.58	0.18	53.5
2	T1	959	3.0	0.637	20.4	LOS C	13.8	99.1	0.89	0.77	0.89	45.0
3	R2	100	3.0	0.135	17.6	LOS B	0.9	6.5	0.77	0.70	0.77	45.9
Appro	ach	1092	3.0	0.637	19.7	LOS B	13.8	99.1	0.86	0.76	0.86	45.3
East: I	Kraaibo	sch Road										
4	L2	77	3.0	0.068	8.6	LOS A	0.7	5.2	0.38	0.64	0.38	51.8
5	T1	67	3.0	0.093	26.9	LOS C	1.0	7.1	0.87	0.64	0.87	41.8
6	R2	160	3.0	0.406	25.4	LOS C	4.2	30.5	0.88	0.77	0.88	42.0
Appro	ach	304	3.0	0.406	21.5	LOS C	4.2	30.5	0.75	0.70	0.75	44.1
North:	N9 Kny	ysna St										
7	L2	180	3.0	0.129	6.6	LOS A	0.9	6.5	0.24	0.61	0.24	53.3
8	T1	858	3.0	0.570	19.8	LOS B	12.0	85.9	0.86	0.74	0.86	45.4
9	R2	61	3.0	0.090	18.0	LOS B	0.5	3.9	0.79	0.69	0.79	45.7
Appro	ach	1099	3.0	0.570	17.5	LOS B	12.0	85.9	0.75	0.72	0.75	46.5
West:	Protea	Park										
10	L2	83	3.0	0.091	10.0	LOS A	1.0	7.0	0.44	0.66	0.44	50.8
11	T1	154	3.0	0.234	27.9	LOS C	2.3	16.8	0.90	0.69	0.90	41.3
12	R2	65	3.0	0.419	41.0	LOS D	2.3	16.4	0.99	0.75	0.99	35.7
Appro	ach	302	3.0	0.419	25.8	LOS C	2.3	16.8	0.79	0.70	0.79	42.0
All Vel	nicles	2797	3.0	0.637	19.7	LOS B	13.8	99.1	0.80	0.73	0.80	45.3

PM Peak Hour

Move	ement F	Performanc	e - Ve	hicles								
Mov	Turn	Demand F	lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID	Tunn	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	v/c	sec		veh	m				km/h
South	: N9 Kn	ysna St										
1	L2	48	3.0	0.035	6.6	LOS A	0.2	1.8	0.23	0.60	0.23	53.3
2	T1	973	3.0	0.734	24.6	LOS C	15.6	112.0	0.95	0.86	1.01	42.8
3	R2	115	3.0	0.186	20.8	LOS C	1.1	8.2	0.88	0.73	0.88	44.2
Appro	ach	1136	3.0	0.734	23.5	LOS C	15.6	112.0	0.91	0.84	0.96	43.3
East:	Kraaibo	sch Road										
4	L2	115	3.0	0.102	9.3	LOS A	1.2	8.9	0.42	0.66	0.42	51.3
5	T1	220	3.0	0.304	28.2	LOS C	3.4	24.4	0.92	0.72	0.92	41.2
6	R2	217	3.0	0.451	23.2	LOS C	5.4	38.9	0.87	0.78	0.87	43.1
Appro	ach	552	3.0	0.451	22.3	LOS C	5.4	38.9	0.79	0.73	0.79	43.7
North:	N9 Kny	/sna St										
7	L2	222	3.0	0.157	6.6	LOS A	1.2	8.3	0.24	0.61	0.24	53.3
8	T1	1028	3.0	0.792	26.9	LOS C	18.0	129.1	0.97	0.93	1.09	41.7
9	R2	88	3.0	0.142	20.3	LOS C	0.9	6.3	0.85	0.71	0.85	44.4
Appro	ach	1339	3.0	0.792	23.1	LOS C	18.0	129.1	0.84	0.86	0.94	43.4
West:	Protea	Park										
10	L2	57	3.0	0.065	10.8	LOS B	0.7	5.1	0.48	0.65	0.48	50.3
11	T1	152	3.0	0.231	27.9	LOS C	2.3	16.6	0.90	0.69	0.90	41.3
12	R2	23	3.0	0.099	35.8	LOS D	0.7	5.2	0.91	0.70	0.91	37.6
Appro	ach	232	3.0	0.231	24.5	LOS C	2.3	16.6	0.80	0.68	0.80	42.8
All Ve	hicles	3258	3.0	0.792	23.2	LOS C	18.0	129.1	0.85	0.82	0.91	43.4

2029 Planning Year + Phase 1+2 Development AM Peak Hour

	ment F	Performanc										
Mov	Turn	Demand F		Deg.	Average		95% Back		Prop.	Effective	Aver. No.	
ID	-	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	v/c	sec		veh	m				km/h
South	: N9 Kn	ysna St										
1	L2	33	3.0	0.023	6.2	LOS A	0.1	0.8	0.18	0.58	0.18	53.5
2	T1	1084	3.0	0.722	21.9	LOS C	16.7	119.6	0.93	0.83	0.96	44.2
3	R2	128	3.0	0.185	18.4	LOS B	1.2	8.5	0.81	0.72	0.81	45.5
Approa	ach	1245	3.0	0.722	21.2	LOS C	16.7	119.6	0.89	0.81	0.92	44.5
East: I	Kraaibo	sch Road										
4	L2	86	3.0	0.078	9.3	LOS A	0.9	6.6	0.41	0.65	0.41	51.3
5	T1	104	3.0	0.144	27.2	LOS C	1.6	11.1	0.88	0.66	0.88	41.6
6	R2	187	3.0	0.531	26.1	LOS C	5.1	36.3	0.93	0.78	0.93	41.7
Approa	ach	378	3.0	0.531	22.6	LOS C	5.1	36.3	0.80	0.72	0.80	43.5
North:	N9 Kn	ysna St										
7	L2	266	3.0	0.199	7.1	LOS A	1.8	12.6	0.30	0.64	0.30	52.9
8	T1	947	3.0	0.629	20.3	LOS C	13.6	97.5	0.89	0.77	0.89	45.1
9	R2	61	3.0	0.096	18.7	LOS B	0.5	3.9	0.82	0.70	0.82	45.3
Approa	ach	1275	3.0	0.629	17.5	LOS B	13.6	97.5	0.76	0.74	0.76	46.5
West:	Protea	Park										
10	L2	83	3.0	0.096	11.3	LOS B	1.1	8.0	0.51	0.67	0.51	49.9
11	T1	269	3.0	0.411	29.0	LOS C	4.3	30.7	0.94	0.75	0.94	40.8
12	R2	65	3.0	0.419	41.0	LOS D	2.3	16.4	0.99	0.75	0.99	35.7
Approa	ach	418	3.0	0.419	27.3	LOS C	4.3	30.7	0.86	0.73	0.86	41.4
All Vel	nicles	3316	3.0	0.722	20.7	LOS C	16.7	119.6	0.83	0.76	0.84	44.7

PM Peak Hour

Move	ment F	Performance	e - Ve	hicles								
Mov	Turn	Demand F	lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID	Turri	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	v/c	sec		veh	m				km/h
South	: N9 Kn	ysna St										
1	L2	48	3.0	0.036	7.1	LOS A	0.4	2.7	0.23	0.60	0.23	53.0
2	T1	1098	3.0	0.717	28.8	LOS C	23.4	168.0	0.91	0.81	0.91	40.8
3	R2	143	3.0	0.322	28.4	LOS C	2.0	14.5	0.92	0.75	0.92	40.5
Appro	ach	1289	3.0	0.717	28.0	LOS C	23.4	168.0	0.89	0.79	0.89	41.1
East: I	Kraaibo	sch Road										
4	L2	155	3.0	0.147	12.4	LOS B	2.8	20.1	0.46	0.68	0.46	49.2
5	T1	378	3.0	0.560	42.7	LOS D	8.7	62.6	0.97	0.79	0.97	35.4
6	R2	335	3.0	0.608	28.9	LOS C	11.6	83.5	0.90	0.82	0.90	40.4
Appro	ach	867	3.0	0.608	32.0	LOS C	11.6	83.5	0.85	0.78	0.85	39.2
North:	N9 Kny	/sna St										
7	L2	307	3.0	0.219	7.3	LOS A	2.7	19.2	0.27	0.63	0.27	52.8
8	T1	1136	3.0	0.818	33.5	LOS C	30.0	215.1	0.93	0.89	1.02	38.8
9	R2	88	3.0	0.186	26.0	LOS C	1.2	8.8	0.85	0.72	0.85	41.5
Appro	ach	1532	3.0	0.818	27.8	LOS C	30.0	215.1	0.80	0.83	0.86	41.2
West:	Protea	Park										
10	L2	57	3.0	0.076	14.8	LOS B	1.1	8.2	0.52	0.67	0.52	47.8
11	T1	264	3.0	0.432	41.9	LOS D	6.0	42.9	0.95	0.76	0.95	35.7
12	R2	23	3.0	0.064	40.7	LOS D	0.9	6.6	0.84	0.70	0.84	35.8
Appro	ach	344	3.0	0.432	37.3	LOS D	6.0	42.9	0.87	0.74	0.87	37.3
All Vel	hicles	4033	3.0	0.818	29.6	LOS C	30.0	215.1	0.84	0.80	0.87	40.4

Intersection of Saasveld Road & Meyer Road

2019 Base Year AM Peak Hour

Move	ment	Performa	nce -	Vehic	les							
Mov	Turn	Demand F	lows		Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID	Turri	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	v/c	sec		veh	m				km/h
East: 3	Saasve	eld										
5	T1	28	3.0	0.052	0.0	LOS A	0.0	0.2	0.02	0.13	0.02	58.8
6	R2	7	3.0	0.052	5.7	LOS A	0.0	0.2	0.02	0.13	0.02	56.5
Appro	ach	36	3.0	0.052	1.2	NA	0.0	0.2	0.02	0.13	0.02	58.3
North:	Meye	r										
7	L2	24	3.0	0.149	8.4	LOS A	0.0	0.0	0.00	1.00	0.00	51.7
9	R2	5	3.0	0.149	8.0	LOS A	0.0	0.0	0.00	1.00	0.00	51.2
Appro	ach	29	3.0	0.149	8.3	LOS A	0.0	0.0	0.00	1.00	0.00	51.6
West:	Saasv	veld										
10	L2	3	3.0	0.032	5.6	LOS A	0.0	0.0	0.00	0.03	0.00	57.9
11	T1	58	3.0	0.032	0.0	LOS A	0.0	0.0	0.00	0.03	0.00	59.7
Appro	ach	61	3.0	0.032	0.3	NA	0.0	0.0	0.00	0.03	0.00	59.6
All Vel	hicles	126	3.0	0.149	2.4	NA	0.0	0.2	0.00	0.29	0.00	57.2

Move	ment	Performa	nce -	Vehic	les							
Mov	Turn	Demand I	Flows		Average		95% Back	of Queue	Prop.		Aver. No.	0
ID	Turri	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	v/c	sec		veh	m				km/h
East: \$	Saasve	əld										
5	T1	51	3.0	0.134	0.0	LOS A	0.1	1.0	0.05	0.18	0.05	58.3
6	R2	21	3.0	0.134	5.7	LOS A	0.1	1.0	0.05	0.18	0.05	56.0
Approa	ach	72	3.0	0.134	1.7	NA	0.1	1.0	0.05	0.18	0.05	57.6
North:	Meye	r										
7	L2	21	3.0	0.134	8.3	LOS A	0.0	0.0	0.00	1.00	0.00	51.7
9	R2	5	3.0	0.134	8.0	LOS A	0.0	0.0	0.00	1.00	0.00	51.2
Approa	ach	26	3.0	0.134	8.2	LOS A	0.0	0.0	0.00	1.00	0.00	51.6
West:	Saasv	eld										
10	L2	13	3.0	0.028	5.6	LOS A	0.0	0.0	0.00	0.14	0.00	57.0
11	T1	41	3.0	0.028	0.0	LOS A	0.0	0.0	0.00	0.14	0.00	58.7
Approa	ach	54	3.0	0.028	1.3	NA	0.0	0.0	0.00	0.14	0.00	58.3
All Vel	hicles	152	3.0	0.134	2.7	NA	0.1	1.0	0.02	0.31	0.02	56.7

2024 Design Year + Phase 1 Development

AM Peak Hour

Move	ment	Performa	nce -	Vehic	les							
Mov ID	Turn	Demand I Total	Flows HV	Deg. Satn		Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed
		veh/h	%	v/c	sec		veh	m				km/h
East: 3	Saasve	eld										
5	T1	87	3.0	0.163	0.0	LOS A	0.1	0.6	0.05	0.15	0.05	58.5
6	R2	27	3.0	0.163	6.5	LOS A	0.1	0.6	0.05	0.15	0.05	56.2
Appro	ach	115	3.0	0.163	1.5	NA	0.1	0.6	0.05	0.15	0.05	57.9
North:	Meye	r										
7	L2	48	3.0	0.333	8.7	LOS A	0.0	0.1	0.00	1.00	0.00	51.8
9	R2	25	3.0	0.333	8.8	LOS A	0.0	0.1	0.00	1.00	0.00	51.3
Appro	ach	74	3.0	0.333	8.8	LOS A	0.0	0.1	0.00	1.00	0.00	51.6
West:	Saasv	reld										
10	L2	63	3.0	0.128	5.6	LOS A	0.0	0.0	0.00	0.16	0.00	56.9
11	T1	178	3.0	0.128	0.0	LOS A	0.0	0.0	0.00	0.16	0.00	58.6
Appro	ach	241	3.0	0.128	1.5	NA	0.0	0.0	0.00	0.16	0.00	58.1
All Vel	hicles	429	3.0	0.333	2.7	NA	0.1	0.6	0.01	0.30	0.01	56.8

Move	ment	Performa	ance -	Vehic	les							
Mov ID	Turn	Demand Total			Average	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed
		veh/h	%	v/c	sec		veh	m				km/h
East:	Saasve	əld										
5	T1	318	3.0	0.635	0.1	LOS A	1.4	9.9	0.23	0.18	0.25	57.6
6	R2	111	3.0	0.635	9.6	LOS A	1.4	9.9	0.23	0.18	0.25	55.4
Appro	ach	428	3.0	0.635	2.5	NA	1.4	9.9	0.23	0.18	0.25	57.0
North:	Meye	r										
7	L2	42	3.0	0.658	8.9	LOS A	0.2	1.3	0.00	1.00	0.00	51.9
9	R2	95	3.0	0.658	9.1	LOS A	0.2	1.3	0.00	1.00	0.00	51.4
Appro	ach	137	3.0	0.658	9.0	LOS A	0.2	1.3	0.00	1.00	0.00	51.5
West:	Saasv	reld										
10	L2	80	3.0	0.135	5.6	LOS A	0.0	0.0	0.00	0.19	0.00	56.6
11	T1	175	3.0	0.135	0.0	LOS A	0.0	0.0	0.00	0.19	0.00	58.3
Appro	ach	255	3.0	0.135	1.8	NA	0.0	0.0	0.00	0.19	0.00	57.8
All Ve	hicles	820	3.0	0.658	3.4	NA	1.4	9.9	0.12	0.32	0.13	56.2

2029 Planning Year + Phase 1+2 Development

AM Peak Hour

Move	ment	Performa	ince -	Vehic	les							
Mov ID	Turn	Demand Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed
		veh/h	%	v/c	sec		veh	m				km/h
East: 3	Saasve	əld										
5	T1	142	3.0	0.256	0.0	LOS A	0.1	0.5	0.04	0.15	0.05	58.2
6	R2	45	3.0	0.256	7.9	LOS A	0.1	0.5	0.04	0.15	0.05	55.9
Appro	ach	187	3.0	0.256	1.9	NA	0.1	0.5	0.04	0.15	0.05	57.6
North:	Meye	r										
7	L2	142	3.0	0.817	26.2	LOS D	0.4	2.6	1.00	1.10	1.44	39.4
9	R2	43	3.0	0.817	52.0	LOS F	0.4	2.6	1.00	1.10	1.44	39.1
Appro	ach	185	3.0	0.817	32.2	LOS D	0.4	2.6	1.00	1.10	1.44	39.3
West:	Saasv	reld										
10	L2	121	3.0	0.220	5.6	LOS A	0.0	0.0	0.00	0.17	0.00	56.7
11	T1	294	3.0	0.220	0.0	LOS A	0.0	0.0	0.00	0.17	0.00	58.4
Appro	ach	415	3.0	0.220	1.7	NA	0.0	0.0	0.00	0.17	0.00	57.9
All Vel	hicles	787	3.0	0.817	8.9	NA	0.4	2.6	0.24	0.39	0.35	52.0

Move	ment	Performa	nce -	Vehic	les							
Mov	Turn	Demand I	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID	TUITI	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	v/c	sec		veh	m				km/h
East: 3	Saasve	eld										
5	T1	554	3.0	1.046	42.5	LOS E	28.5	204.5	1.00	0.46	4.71	30.3
6	R2	188	3.0	1.046	106.8	LOS F	28.5	204.5	1.00	0.46	4.71	29.6
Appro	ach	742	3.0	1.046	58.9	NA	28.5	204.5	1.00	0.46	4.71	30.1
North:	Meye	r										
7	L2	42	3.0	1.564	521.9	LOS F	51.7	371.4	1.00	4.72	20.06	5.8
9	R2	173	3.0	1.564	557.8	LOS F	51.7	371.4	1.00	4.72	20.06	5.8
Appro	ach	215	3.0	1.564	550.8	LOS F	51.7	371.4	1.00	4.72	20.06	5.8
West:	Saasv	veld										
10	L2	136	3.0	0.225	5.6	LOS A	0.0	0.0	0.00	0.19	0.00	56.6
11	T1	287	3.0	0.225	0.0	LOS A	0.0	0.0	0.00	0.19	0.00	58.2
Appro	ach	423	3.0	0.225	1.8	NA	0.0	0.0	0.00	0.19	0.00	57.7
All Vel	nicles	1380	3.0	1.564	117.9	NA	51.7	371.4	0.69	1.04	5.65	19.9

2029 Planning Year + Phase 1+2 Development + Upgrades

AM Peak Hour

Move	ment	Performa	nce -	Vehic	les							
Mov	Turn	Demand F			Average		95% Back	of Queue	Prop.		Aver. No.	0
ID	1 ann	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	v/c	sec		veh	m				km/h
East: 3	Saasve	eld										
5	T1	142	3.0	0.146	4.9	LOS A	1.0	7.0	0.21	0.51	0.21	53.6
6	R2	45	3.0	0.146	8.2	LOS A	1.0	7.0	0.21	0.51	0.21	53.2
Appro	ach	187	3.0	0.146	5.7	LOS A	1.0	7.0	0.21	0.51	0.21	53.5
North:	Meye	r										
7	L2	142	3.0	0.206	7.1	LOS A	1.3	9.0	0.55	0.67	0.55	51.7
9	R2	43	3.0	0.206	10.3	LOS B	1.3	9.0	0.55	0.67	0.55	52.1
Appro	ach	185	3.0	0.206	7.8	LOS A	1.3	9.0	0.55	0.67	0.55	51.7
West:	Saasv	eld										
10	L2	121	3.0	0.308	5.0	LOS A	2.2	16.0	0.23	0.48	0.23	53.3
11	T1	294	3.0	0.308	5.0	LOS A	2.2	16.0	0.23	0.48	0.23	54.1
Appro	ach	415	3.0	0.308	5.0	LOS A	2.2	16.0	0.23	0.48	0.23	53.9
All Vel	hicles	787	3.0	0.308	5.8	LOS A	2.2	16.0	0.30	0.53	0.30	53.3

Move	ment	Performa	nce -	Vehic	les							
Mov	Turn	Demand I		3.	Average				Prop.		Aver. No.	0
ID		Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	v/c	sec		veh	m				km/h
East: 3	Saasve	əld										
5	T1	554	3.0	0.680	7.0	LOS A	7.8	55.8	0.77	0.65	0.77	51.8
6	R2	188	3.0	0.680	10.3	LOS B	7.8	55.8	0.77	0.65	0.77	51.4
Appro	ach	742	3.0	0.680	7.8	LOS A	7.8	55.8	0.77	0.65	0.77	51.7
North:	Meye	r										
7	L2	42	3.0	0.245	7.1	LOS A	1.6	11.7	0.60	0.71	0.60	50.4
9	R2	173	3.0	0.245	10.3	LOS B	1.6	11.7	0.60	0.71	0.60	50.8
Appro	ach	215	3.0	0.245	9.7	LOS A	1.6	11.7	0.60	0.71	0.60	50.7
West:	Saasv	reld										
10	L2	136	3.0	0.416	6.5	LOS A	3.4	24.7	0.60	0.61	0.60	52.1
11	T1	287	3.0	0.416	6.5	LOS A	3.4	24.7	0.60	0.61	0.60	52.8
Appro	ach	423	3.0	0.416	6.5	LOS A	3.4	24.7	0.60	0.61	0.60	52.6
All Vel	nicles	1380	3.0	0.680	7.7	LOS A	7.8	55.8	0.69	0.65	0.69	51.8

Access 1 & Meyer Road

Move	ement	Performa	ance -	Vehi	cles							
Mov	Turn	Demand F	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID	Turn	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	v/c	sec		veh	m				km/h
South	: Meye	er										
1	L2	5	3.0 (0.111	5.2	LOS A	0.6	4.0	0.25	0.62	0.25	51.2
2	T1	5	3.0 (0.111	5.2	LOS A	0.6	4.0	0.25	0.62	0.25	52.0
3	R2	118	3.0 (0.111	8.4	LOS A	0.6	4.0	0.25	0.62	0.25	51.6
Appro	ach	128	3.0	0.111	8.1	LOS A	0.6	4.0	0.25	0.62	0.25	51.6
East: /	Access	s 1										
4	L2	38	3.0 (0.093	4.9	LOS A	0.5	3.4	0.15	0.60	0.15	52.1
5	T1	5	3.0 (0.093	4.8	LOS A	0.5	3.4	0.15	0.60	0.15	52.9
6	R2	76	3.0 (0.093	8.1	LOS A	0.5	3.4	0.15	0.60	0.15	52.6
Appro	ach	119	3.0	0.093	6.9	LOS A	0.5	3.4	0.15	0.60	0.15	52.4
North:	Meye	r										
7	L2	236	3.0 (0.230	5.6	LOS A	1.3	9.3	0.35	0.56	0.35	52.9
8	T1	15	3.0 (0.230	5.6	LOS A	1.3	9.3	0.35	0.56	0.35	53.7
9	R2	5	3.0 (0.230	8.8	LOS A	1.3	9.3	0.35	0.56	0.35	53.3
Appro	ach	256	3.0	0.230	5.7	LOS A	1.3	9.3	0.35	0.56	0.35	52.9
West:	Arthur	Bleksley										
10	L2	5	3.0 (0.025	5.8	LOS A	0.1	0.8	0.36	0.59	0.36	51.7
11	T1	5	3.0 (0.025	5.7	LOS A	0.1	0.8	0.36	0.59	0.36	52.5
12	R2	15	3.0 (0.025	9.0	LOS A	0.1	0.8	0.36	0.59	0.36	52.1
Appro	ach	25	3.0	0.025	7.6	LOS A	0.1	0.8	0.36	0.59	0.36	52.1
All Vel	hicles	528	3.0	0.230	6.7	LOS A	1.3	9.3	0.28	0.59	0.28	52.5

2029 Planning Year + Phase 1+2 Development AM Peak Hour

Move	ment P	erformance	e - Ve	hicles								
Mov	T	Demand F	lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID	Turn	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	v/c	sec		veh	m				km/h
South:	Meyer											
1	L2	17	3.0	0.174	7.0	LOS A	0.9	6.6	0.52	0.71	0.52	50.5
2	T1	17	3.0	0.174	6.9	LOS A	0.9	6.6	0.52	0.71	0.52	51.3
3	R2	123	3.0	0.174	10.1	LOS B	0.9	6.6	0.52	0.71	0.52	50.9
Approa	ach	157	3.0	0.174	9.5	LOS A	0.9	6.6	0.52	0.71	0.52	50.9
East: /	Access	1										
4	L2	167	3.0	0.356	4.9	LOS A	2.4	17.4	0.17	0.59	0.17	52.0
5	T1	5	3.0	0.356	4.8	LOS A	2.4	17.4	0.17	0.59	0.17	52.8
6	R2	336	3.0	0.356	8.1	LOS A	2.4	17.4	0.17	0.59	0.17	52.4
Approa	ach	508	3.0	0.356	7.0	LOS A	2.4	17.4	0.17	0.59	0.17	52.3
North:	Meyer											
7	L2	246	3.0	0.240	5.7	LOS A	1.4	10.4	0.38	0.57	0.38	52.8
8	T1	14	3.0	0.240	5.6	LOS A	1.4	10.4	0.38	0.57	0.38	53.7
9	R2	5	3.0	0.240	8.8	LOS A	1.4	10.4	0.38	0.57	0.38	53.3
Approa	ach	265	3.0	0.240	5.7	LOS A	1.4	10.4	0.38	0.57	0.38	52.9
West:	Arthur E	Bleksley										
10	L2	5	3.0	0.028	7.5	LOS A	0.1	1.0	0.55	0.66	0.55	50.7
11	T1	5	3.0	0.028	7.4	LOS A	0.1	1.0	0.55	0.66	0.55	51.5
12	R2	13	3.0	0.028	10.7	LOS B	0.1	1.0	0.55	0.66	0.55	51.1
Approa	ach	23	3.0	0.028	9.2	LOS A	0.1	1.0	0.55	0.66	0.55	51.1
All Vel	nicles	954	3.0	0.356	7.1	LOS A	2.4	17.4	0.30	0.61	0.30	52.2

Access 2 & Saasveld Road

2029 Planning Year + Phase 1+2 Development AM Peak Hour

Move	ment	Performa	nce -	Vehic	les							
Mov ID	Turn	Demand I Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed
		veh/h	%	v/c	sec		veh	m				km/h
East: \$	East: Saasveld											
5	T1	38	3.0	0.131	5.1	LOS A	0.7	5.0	0.24	0.60	0.24	52.4
6	R2	118	3.0	0.131	8.3	LOS A	0.7	5.0	0.24	0.60	0.24	52.0
Approa	ach	156	3.0	0.131	7.5	LOS A	0.7	5.0	0.24	0.60	0.24	52.1
North:	Acces	ss 2										
7	L2	38	3.0	0.104	5.4	LOS A	0.5	3.9	0.31	0.61	0.31	51.6
9	R2	76	3.0	0.104	8.6	LOS A	0.5	3.9	0.31	0.61	0.31	52.1
Approa	ach	114	3.0	0.104	7.5	LOS A	0.5	3.9	0.31	0.61	0.31	51.9
West:	Saasv	veld										
10	L2	236	3.0	0.302	5.5	LOS A	1.9	13.4	0.35	0.54	0.35	52.9
11	T1	118	3.0	0.302	5.5	LOS A	1.9	13.4	0.35	0.54	0.35	53.7
Approa	ach	354	3.0	0.302	5.5	LOS A	1.9	13.4	0.35	0.54	0.35	53.2
All Vel	hicles	623	3.0	0.302	6.4	LOS A	1.9	13.4	0.31	0.57	0.31	52.7

Move	ment	Performa	ince -	Vehic	les							
Mov ID	Turn	Demand Total	Flows HV	Deg. Satn		Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed
		veh/h	%	v/c	sec		veh	m				km/h
East:	East: Saasveld											
5	T1	167	3.0	0.326	7.2	LOS A	2.0	14.6	0.60	0.72	0.60	51.8
6	R2	123	3.0	0.326	10.4	LOS B	2.0	14.6	0.60	0.72	0.60	51.5
Appro	ach	291	3.0	0.326	8.6	LOS A	2.0	14.6	0.60	0.72	0.60	51.7
North:	Acces	ss 2										
7	L2	167	3.0	0.424	5.7	LOS A	3.1	22.3	0.42	0.62	0.42	51.3
9	R2	336	3.0	0.424	8.8	LOS A	3.1	22.3	0.42	0.62	0.42	51.8
Appro	ach	503	3.0	0.424	7.8	LOS A	3.1	22.3	0.42	0.62	0.42	51.6
West:	Saasv	reld										
10	L2	120	3.0	0.217	5.5	LOS A	1.3	9.6	0.36	0.53	0.36	52.8
11	T1	123	3.0	0.217	5.4	LOS A	1.3	9.6	0.36	0.53	0.36	53.7
Appro	ach	243	3.0	0.217	5.5	LOS A	1.3	9.6	0.36	0.53	0.36	53.3
All Ve	hicles	1037	3.0	0.424	7.5	LOS A	3.1	22.3	0.45	0.63	0.45	52.0

Access 3 & Saasveld Road / Kraaibosch Road

2029 Planning Year + Phase 1+2 Development AM Peak Hour

Move	ment F	Performanc	ce - Ve	hicles								
Mov	T	Demand I	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID	Turn	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	v/c	sec		veh	m				km/h
South	: Kraaib	osch										
1	L2	118	3.0	0.269	5.0	LOS A	1.6	11.2	0.20	0.49	0.20	53.3
2	T1	236	3.0	0.269	4.9	LOS A	1.6	11.2	0.20	0.49	0.20	54.2
3	R2	5	3.0	0.269	8.2	LOS A	1.6	11.2	0.20	0.49	0.20	53.8
Appro	ach	359	3.0	0.269	5.0	LOS A	1.6	11.2	0.20	0.49	0.20	53.9
East: \$	Saasve	ld										
4	L2	5	3.0	0.015	5.5	LOS A	0.1	0.5	0.31	0.55	0.31	52.3
5	T1	5	3.0	0.015	5.5	LOS A	0.1	0.5	0.31	0.55	0.31	53.1
6	R2	5	3.0	0.015	8.7	LOS A	0.1	0.5	0.31	0.55	0.31	52.8
Approa	ach	16	3.0	0.015	6.6	LOS A	0.1	0.5	0.31	0.55	0.31	52.7
North:	Access	s 3										
7	L2	5	3.0	0.112	4.8	LOS A	0.6	4.3	0.09	0.52	0.09	53.2
8	T1	114	3.0	0.112	4.7	LOS A	0.6	4.3	0.09	0.52	0.09	54.0
9	R2	38	3.0	0.112	8.0	LOS A	0.6	4.3	0.09	0.52	0.09	53.6
Approa	ach	157	3.0	0.112	5.5	LOS A	0.6	4.3	0.09	0.52	0.09	53.9
West:	Saasve	eld										
10	L2	118	3.0	0.131	6.2	LOS A	0.7	4.8	0.43	0.61	0.43	52.6
11	T1	5	3.0	0.131	6.2	LOS A	0.7	4.8	0.43	0.61	0.43	53.5
12	R2	5	3.0	0.131	9.4	LOS A	0.7	4.8	0.43	0.61	0.43	53.1
Appro	Approach		3.0	0.131	6.4	LOS A	0.7	4.8	0.43	0.61	0.43	52.7
All Vel	nicles	660	3.0	0.269	5.4	LOS A	1.6	11.2	0.22	0.52	0.22	53.6

Move	ment P	Performanc	e - Ve	hicles								
Mov	Turn	Demand F	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID	Turn	Total	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	v/c	sec		veh	m				km/h
South:	Kraaib	osch										
1	L2	123	3.0	0.345	6.0	LOS A	2.1	15.3	0.44	0.58	0.44	52.5
2	T1	246	3.0	0.345	6.0	LOS A	2.1	15.3	0.44	0.58	0.44	53.4
3	R2	5	3.0	0.345	9.2	LOS A	2.1	15.3	0.44	0.58	0.44	53.0
Approa	ach	375	3.0	0.345	6.0	LOS A	2.1	15.3	0.44	0.58	0.44	53.1
East: S	Saasvel	ld										
4	L2	5	3.0	0.023	9.1	LOS A	0.1	0.8	0.64	0.68	0.64	50.1
5	T1	5	3.0	0.023	9.0	LOS A	0.1	0.8	0.64	0.68	0.64	50.8
6	R2	5	3.0	0.023	12.2	LOS B	0.1	0.8	0.64	0.68	0.64	50.5
Approa	ach	16	3.0	0.023	10.1	LOS B	0.1	0.8	0.64	0.68	0.64	50.4
North:	Access	s 3										
7	L2	5	3.0	0.441	4.8	LOS A	3.5	25.2	0.13	0.52	0.13	53.0
8	T1	503	3.0	0.441	4.8	LOS A	3.5	25.2	0.13	0.52	0.13	53.9
9	R2	167	3.0	0.441	8.0	LOS A	3.5	25.2	0.13	0.52	0.13	53.5
Approa	ach	676	3.0	0.441	5.6	LOS A	3.5	25.2	0.13	0.52	0.13	53.8
West:	Saasve	eld										
10	L2	60	3.0	0.074	6.2	LOS A	0.4	2.7	0.45	0.60	0.45	52.5
11	T1	5	3.0	0.074	6.1	LOS A	0.4	2.7	0.45	0.60	0.45	53.3
12	R2	5	3.0	0.074	9.4	LOS A	0.4	2.7	0.45	0.60	0.45	53.0
Approa	ach	71	3.0	0.074	6.4	LOS A	0.4	2.7	0.45	0.60	0.45	52.6
All Vel	nicles	1137	3.0	0.441	5.8	LOS A	3.5	25.2	0.26	0.54	0.26	53.4