| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

# Platinum Pride Proposed Crematorium

## Atmospheric Impact Assessment



Written by:

Caitlin Morris, BSc (Chem Eng), LLM (Env Law)

Reviewed by:

Sasha Kasperski, BEng, MEng Candidate (Chem Eng)

Sean Charteris, BSc (Chem Eng)



| Client                              | Report                                                                                                          | Version           | Report No.      | Date        |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------|-----------------|-------------|
| Sharples Environmental Services     | Atmospheric Impact Report                                                                                       | 05                | YTC1547SES/05   | 2022-09-09  |
| Table of Contents                   |                                                                                                                 |                   |                 |             |
| 1. Executive Summary                |                                                                                                                 |                   |                 | 4           |
| 2. Introduction                     |                                                                                                                 |                   |                 |             |
| 3. Enterprise Information           | I                                                                                                               |                   |                 | 7           |
| 3.1. Enterprise Details             |                                                                                                                 |                   |                 | -           |
| 3.2. Location and exte              | nt of plant                                                                                                     |                   |                 | 8           |
| 3.3. Atmospheric Emiss              | ions Licence and Other Auth                                                                                     | norisations       |                 | Q           |
| 4. Nature of Process                |                                                                                                                 |                   |                 | 10          |
| 4.1. Listed activities              |                                                                                                                 |                   |                 | 10          |
| 4.2. Process description            | n                                                                                                               |                   |                 | 10          |
| 4.3. Unit process                   |                                                                                                                 |                   |                 | 10          |
| 5. Technical Information            | I Contraction of the second |                   |                 | 1           |
| 5.1. Raw materials use              | d                                                                                                               |                   |                 | 1           |
| 5.2. Production rates               |                                                                                                                 |                   |                 | 1           |
| 5.3. Materials used in e            | energy sources                                                                                                  |                   |                 | 1           |
| 5.4. Appliances and A               | batement Equipment Contro                                                                                       | ol Technology     |                 | 1           |
| 6. Atmospheric Emission             | S                                                                                                               |                   |                 | 12          |
| 6.1. Point source parar             | meters                                                                                                          |                   |                 | 12          |
| 6.2. Point source maxir             | num emissions rates (normal                                                                                     | operating cor     | nditions)       | 13          |
| 6.3. Point source maxir conditions) | num emissions rates (start-up                                                                                   | , shut-down, u    | pset and mainte | nance<br>10 |
| 6.4. Fugitive emissions             | (area and/ or line sources)                                                                                     |                   |                 | ]4          |
| 6.5. Emergency Incide               | nts                                                                                                             |                   |                 | ]4          |
| 7. Impact of Enterprise of          | on the Receiving Environmen                                                                                     | t – Air Dispersio | on Model        | 13          |
| 7.1. Facility Information           | 1                                                                                                               |                   |                 | 13          |
| 7.2. Emissions Characte             | erisation                                                                                                       |                   |                 | 22          |
| 7.3. Meteorological Do              | ata                                                                                                             |                   |                 | 20          |
| 7.4. Ambient Impact A               | nalysis                                                                                                         |                   |                 | 27          |
| 7.5. Modelling Procedu              | Jre                                                                                                             |                   |                 | 4           |
| 7.6. Results                        |                                                                                                                 |                   |                 | 47          |
| 7.7. Air Dispersion Mod             | elling Conclusions                                                                                              |                   |                 | 7           |



|      | Client                                                                    | Report                    | Version  | Report No. | Date       |
|------|---------------------------------------------------------------------------|---------------------------|----------|------------|------------|
| Shai | harples Environmental Services Atmospheric Impact Report 05 YTC1547SES/05 |                           |          |            | 2022-09-09 |
| 8.   | 8. Complaints                                                             |                           |          |            |            |
| 9.   | Current or Planned Air                                                    | Quality Management Inter  | ventions |            | 72         |
| 10.  | 10. Compliance and Enforcement History                                    |                           |          | 72         |            |
| 11.  | 11. Appendix A: Report Details                                            |                           |          | 73         |            |
| 12.  | 12. Appendix B: Air Dispersion Modelling Study Reporting Requirements     |                           |          | 74         |            |
| 13.  | Appendix C: Specialis                                                     | t Report Requirements     |          |            | 79         |
| 14.  | 14. Appendix D: Curriculum Vitae of Specialist                            |                           |          | 81         |            |
| 15.  | Appendix E: Applican                                                      | t Declaration of Accuracy |          |            | 82         |
| 16.  | Appendix F: Specialist                                                    | Declaration of Independen | се       |            | 83         |



| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

#### **Executive Summary** 1.

Ikamva Green Holdings, trading as Platinum Pride, are in the process of obtaining the necessary permissions to commission a crematorium at 55 Stella Road in Montague Gardens, Cape Town.

As part of the Environmental Impact Assessment (EIA) and Atmospheric Emissions Licence (AEL) applications, a Specialist Air Quality Impact Assessment and an Atmospheric Impact Report (AIR) are required. This report fulfils the requirements for both the Specialist Air Quality Impact Assessment and the AIR and has been conducted in accordance with the Regulations Prescribing the Format of the Atmospheric Impact Report<sup>1</sup>, the Regulations Regarding Air Dispersion Modelling<sup>2</sup>, and Appendix 6 of the EIA Regulations<sup>3</sup>.

The forms that are contained in the Regulations Prescribing the Format of the Atmospheric Impact Report were completed and are contained in Sections 3 to 6 of this report. Section 7 of this report contains the information that is required by the Regulations Regarding Air Dispersion Modelling, and the results from the air dispersion model.

In Section 7, the proposed location of the site was examined. Baseline ambient air quality in the area was collected from ambient air quality monitoring stations. Baseline data from the monitoring stations that are closest to the site, and with the highest level of data availability, were chosen to be used further in the study.

The crematorium is envisioned to be commissioned in two phases: Phase 1, which includes the installation of 2 cremators, and Phase 2, which includes the installation of an additional 4 cremators. Each cremator has the capacity to cremate 24 cadavers in a 24-hour period. This means that the crematorium, after commissioning Phases 1 and 2, will have a maximum cremation capacity of 144 cadavers per day. An emissions inventory was compiled for the pollutants that are identified by the air quality Listed Activities legislation<sup>4</sup> to be of concern from crematoria. These pollutants are particulate matter (PM), carbon monoxide (CO), the oxides of nitrogen (NOx), and mercury (Hg). As per comments received during the commenting period on the Draft Basic Assessment Report, benzene and lead emissions were also modelled and the emission rates for these pollutants were estimated using the EMEP/EEA emissions factors. The extremely conservative assumption of assuming all volatile organic compounds (VOCs) emitted from cremators are comprised completely of benzene was made. Level 2 air dispersion modelling was conducted for these pollutants using the AERMOD View programme.

The maximum ambient pollutant concentrations that were predicted by the AERMOD model were added to baseline air quality data, where available, to obtain cumulative predicted concentrations. These concentrations were compared to the National Ambient Air Quality Standards (NAAQS), and international guidelines where no NAAQS are available. This is a very conservative method in which to assess the air quality impact of the proposed facility, as it assumes that the maximum pollutant

- <sup>1</sup> G.N.R. 747 of 2013
- <sup>2</sup> G.N.R. 533 of 2014 <sup>3</sup> G.N.R. 982 of 2014
- <sup>4</sup> G.N. 893 of 2013



| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

concentrations are experienced every hour/day in the three year period, which would not be the case in reality.

Ambient PM<sub>10</sub> (using baseline data from the Table View monitoring station), PM<sub>2.5</sub>, CO, mercury and lead concentrations around the fence line of the site are predicted to remain in compliance with the NAAQS standards (and the international guideline for mercury) should the proposed crematorium be commissioned.

While the annual cumulative benzene concentration would have exceeded the NAAQS in 2019 should the crematorium have been commissioned, this was also the case in the baseline data before the contribution from the proposed crematorium was considered. Thus, the benzene concentration as a result of the proposed crematorium does not change the overall compliance status.

Maximum ambient hourly NO<sub>2</sub> concentrations around the fence line are predicted to exceed the hourly NAAQS standard. However, the concentration rapidly decreases with distance from the site, and no NAAQS exceedances are predicted in any of the surrounding residential areas. It must also be noted that the cumulative air quality impact of the facility is estimated by assuming that the maximum hourly concentration will be experienced every hour of every day in the three year period, which would not be the case in reality. The ambient annual NO<sub>2</sub> concentration at the fence line is predicted to comply with the annual NAAQS for NO<sub>2</sub>.

When PM<sub>10</sub> data from the Edgemead monitoring station is used as a baseline, the daily PM<sub>10</sub> concentrations are predicted to exceed the NAAQS standard at the facility's fence line. Again, it should be noted that the cumulative air quality impact of the facility is estimated by assuming that the maximum daily concentration will be experienced every day in the three year period, which would not be the case in reality.

Although the engineering specifications of the cremators indicate that the stacks are to be 12 metres high, the AERMOD model was run using various stack heights of up to 20 metres. The optimum height was determined to be 16 metres, which resulted in no NAAQS exceedances at the fence line for PM<sub>10</sub> or NO<sub>2</sub>, unless these exceedances existed in the baseline data (i.e. daily PM<sub>10</sub> in 2021 using the Edgemead baseline data). It is recommended that higher stack heights be considered by the proponent in order to minimise the effect of the proposed crematorium on ambient air quality.



| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

### 2. Introduction

Ikamva Green Holdings, trading as Platinum Pride, are in the process of obtaining the necessary permissions to commission a crematorium at 55 Stella Road in Montague Gardens, Cape Town.

The crematorium is envisioned to be commissioned in two phases: Phase 1, which includes the installation of 2 cremators, and Phase 2, which includes the installation of an additional 4 cremators. Each cremator has the capacity to cremate 24 cadavers in a 24-hour period. This means that the crematorium, after the commissioning of Phases 1 and 2, will have a maximum cremation capacity of 144 cadavers per day.

As part of the Environmental Impact Assessment (EIA) and Atmospheric Emissions Licence (AEL) applications, a Specialist Air Quality Impact Assessment, and an Atmospheric Impact Report (AIR) are required. This report fulfils the requirements for both the Specialist Air Quality Impact Assessment and the AIR and has been conducted in accordance with the Regulations Prescribing the Format of the Atmospheric. Impact Report (G.N.R. 747 of 2013), the Regulations Regarding Air Dispersion Modelling (G.N.R. 533 of 2014) and Appendix 6 of the EIA Regulations (G.N.R. 982 of 2014).



| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

### 3. Enterprise Information

### 3.1. Enterprise Details

| Enterprise Name                                                                                | Ikamva Green Holdings                |
|------------------------------------------------------------------------------------------------|--------------------------------------|
| Trading As                                                                                     | Platinum Pride                       |
| Company/Close Corporation/Trust Registration<br>Number (Registration Numbers if Joint Venture) | Registration in Progress             |
| Registered Address                                                                             | Teubes Family Wines<br>791 Vredendal |
| Postal Address                                                                                 | Teubes Family Wines<br>791 Vredendal |
| Telephone Number (General)                                                                     | 027 213 2377                         |
| Fax Number (General)                                                                           | N/A                                  |
| Industry Type/Nature of Trade                                                                  | Crematorium                          |
| Land Use Zoning as per Town Planning Scheme                                                    | General Industrial 1                 |
| Land Use Rights if outside Town Planning Scheme                                                | N/A                                  |

| Responsible Person          | Sybrand Teubes                     |
|-----------------------------|------------------------------------|
| Emission Control Officer    | Sybrand Teubes                     |
| Telephone Number            | 027 213 2377                       |
| Cell Phone Number           | 084 601 2458                       |
| Fax Number                  | N/A                                |
| Email Address               | sybrand.teubes@platinumpride.co.za |
| After Hours Contact Details | 084 601 2458                       |



| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

### 3.2. Location and extent of plant

| Physical Address of the Plant                   | 55 Stella Road Montague Gardens             |
|-------------------------------------------------|---------------------------------------------|
| Description of Site (Where No Street Address)   | N/A                                         |
| Coordinates of Approximate Centre of Operations | -33.85127, 18.52201                         |
| Extent (km²)                                    | 0.002509                                    |
| Elevation Above Mean Sea Level (m)              | 10                                          |
| Province                                        | Western Cape                                |
| Metropolitan/District Municipality              | City of Cape Town Metropolitan Municipality |
| Local Municipality                              | NA                                          |
| Designated Priority Area (if applicable)        | NA                                          |

### Description of surrounding land use (within a 5 km radius)

The proposed crematorium is to be located at 55 Stella Road in Montague Gardens, Cape Town. Within a 5 km radius of the site, numerous suburbs are zoned for various land uses.

In the immediate area surrounding the site is the Montague Gardens industrial area.

Approximately 2 km NNE of the site is the industrial area of Killarney Gardens. Approximately 3 km NNE of the site is the Dunoon informal settlement. Approximately 2.3 km NE of the site are the Richwood and Burgundy Estate residential areas.

Approximately 1 km E of the site is the Bothasig residential area. Approximately 3 km E of the site is the Durbanville Hills agricultural area.

Approximately 2.6 km SE of the site is the Edgemead residential area. The residential area of Summer Greens is located approximately 2.9 km SSE of the site, with the residential area of Acacia Park located 4 km to the SSE.

Century City's commercial and residential area is located approximately 5 km SSW of the site, with the informal settlement of Joe Slovo Park approximately 2.2 km SW of the site, and the residential areas of Sandrift and Tijgerhof 3.5 km to the SW.

The general boundary of the Milnerton residential area is located approximately 300 metres to the W of the site, but it has been confirmed with the City of Cape Town by the Environmental Assessment Practitioner that no habitable dwellings exist within 500 metres.

The residential suburbs of Flamingo Vlei, Table View and Parklands are located approximately 1.5 km, 3 km and 5 km, respectively, NW of the site.



| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

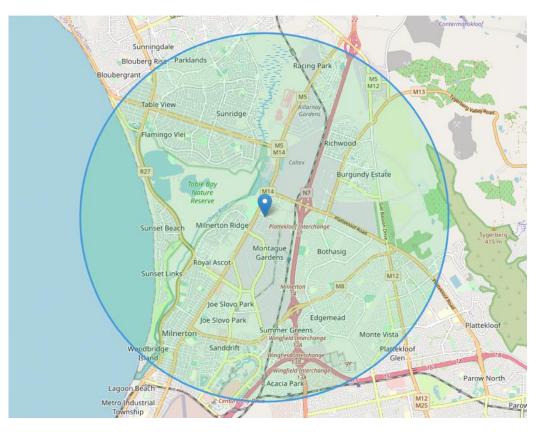



Figure 1: Map indicating the surrounding land use within a 5 km radius

### 3.3. Atmospheric Emissions Licence and Other Authorisations

| Licence Type                                                           | Licence Number |
|------------------------------------------------------------------------|----------------|
| Various licence and permission applications are currently in progress. | NA             |



| Client Report                   |                           | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

### 4. Nature of Process

### 4.1. Listed activities

| Existing/<br>Proposed | Category | Sub-<br>category | Name of the Listed Activity                     | Description of the Listed Activity                                                            |
|-----------------------|----------|------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Proposed              | 8        | 8.2              | Crematoria and Veterinary<br>Waste Incineration | Cremation of human remains, companion animals (pets) and the incineration of veterinary waste |

### 4.2. Process description

The establishment of a crematorium at the site is to take place in two phases:

- Phase 1 will consist of the installation of two cremators that operate 24 hours per day. Each cremator has a maximum cremation capacity of 24 cadavers per day. Thus, in total, the site will have the capacity to cremate 48 cadavers per day.
- Phase 2 will consist of the installation of an additional four cremators, also operating 24 hours per day. After the completion of phase 2, the site will have the capacity to cremate 144 cadavers per day.

### 4.3. Unit process

| Existing/<br>Proposed | Unit Process | Unit Process Function       | Batch or Continuous Process |  |
|-----------------------|--------------|-----------------------------|-----------------------------|--|
| Proposed              | Cremation    | Cremation of human cadavers | Batch                       |  |



| Client                          | Client Report             |    | Report No.    | Date       |  |
|---------------------------------|---------------------------|----|---------------|------------|--|
| Sharples Environmental Services | Atmospheric Impact Report | 05 | YTC1547SES/05 | 2022-09-09 |  |

### 5. Technical Information

### 5.1. Raw materials used

| Raw Material Type | Raw Material Type     Design Consumption Rate (Quantity) |              |
|-------------------|----------------------------------------------------------|--------------|
| Human cadavers    | 144                                                      | cadavers/day |

### 5.2. Production rates

| Production Name | Maximum Production<br>Capacity Permitted<br>(Quantity) | Design Production<br>Capacity<br>(Quantity) | Actual Production<br>Capacity<br>(Quantity) | Units (Quantity/Period) |
|-----------------|--------------------------------------------------------|---------------------------------------------|---------------------------------------------|-------------------------|
| N/A             | N/A                                                    | N/A                                         | N/A                                         | N/A                     |

| By-Product Name | Maximum Production<br>Capacity Permitted<br>(Quantity) | Design Production<br>Capacity<br>(Quantity) | Actual Production<br>Capacity<br>(Quantity) | Units (Quantity/Period) |
|-----------------|--------------------------------------------------------|---------------------------------------------|---------------------------------------------|-------------------------|
| N/A             | N/A                                                    | N/A                                         | N/A                                         | N/A                     |

### 5.3. Materials used in energy sources

| Materials for<br>Energy | Sulphur<br>Content of the<br>Material<br>(%) | Ash Content of<br>Material (%) | Maximum<br>Permitted<br>Consumption<br>Rate (Quantity) | Design<br>Consumption<br>Rate<br>(Quantity) | Actual<br>Consumption<br>Rate<br>(Quantity) | Units<br>(Quantity/<br>Period) |
|-------------------------|----------------------------------------------|--------------------------------|--------------------------------------------------------|---------------------------------------------|---------------------------------------------|--------------------------------|
| LPG                     | 0                                            | 0                              | 4 000                                                  | 3 312                                       | 3 312                                       | kg/day                         |

### 5.4. Appliances and Abatement Equipment Control Technology

| Appliance Name | Appliance Type/Description | Appliance Function/Purposes |
|----------------|----------------------------|-----------------------------|
| N/A            | N/A                        | N/A                         |



### 6. Atmospheric Emissions

### 6.1. Point source parameters

| Point Source<br>Number | Point Source<br>Name | Latitude<br>(decimal<br>degrees) | Longitude<br>(decimal<br>degrees) | Height of<br>Release<br>Above<br>Ground (m) | Height Above<br>Nearby<br>Building (m) | Diameter at<br>Stack Tip /<br>Vent Exit (m) | Actual Gas<br>Exit Temp (°C) | Actual Gas<br>Volumetric<br>Flow (m³/hr) | Actual Gas<br>Exit Velocity<br>(m/s) | Type of emission<br>(continuous/batch) |
|------------------------|----------------------|----------------------------------|-----------------------------------|---------------------------------------------|----------------------------------------|---------------------------------------------|------------------------------|------------------------------------------|--------------------------------------|----------------------------------------|
| EU0001                 | Cremator 1           | -33.851222<br>(estimated)        | 18.522037<br>(estimated)          | 12 (provided)                               | 6<br>(estimated)                       | 0.35<br>(provided)                          | 600<br>(provided)            | 3 500<br>(provided)                      | 10.1<br>(provided)                   | Batch                                  |
| EU0002                 | Cremator 2           | -33.851199<br>(estimated)        | 18.521955<br>(estimated)          | 12 (provided)                               | 6<br>(estimated)                       | 0.35<br>(provided)                          | 600<br>(provided)            | 3 500<br>(provided)                      | 10.1<br>(provided)                   | Batch                                  |
| EU0003                 | Cremator 3           | -33.851177<br>(estimated)        | 18.521881<br>(estimated)          | 12 (provided)                               | 6<br>(estimated)                       | 0.35<br>(provided)                          | 600<br>(provided)            | 3 500<br>(provided)                      | 10.1<br>(provided)                   | Batch                                  |
| EU0004                 | Cremator 4           | -33.851151<br>(estimated)        | 18.52181<br>(estimated)           | 12 (provided)                               | 6<br>(estimated)                       | 0.35<br>(provided)                          | 600<br>(provided)            | 3 500<br>(provided)                      | 10.1<br>(provided)                   | Batch                                  |
| EU0005                 | Cremator 5           | -33.85113<br>(estimated)         | 18.521743<br>(estimated)          | 12 (provided)                               | 6<br>(estimated)                       | 0.35<br>(provided)                          | 600<br>(provided)            | 3 500<br>(provided)                      | 10.1<br>(provided)                   | Batch                                  |
| EU0006                 | Cremator 6           | -33.851107<br>(estimated)        | 18.521673<br>(estimated)          | 12 (provided)                               | 6<br>(estimated)                       | 0.35<br>(provided)                          | 600<br>(provided)            | 3 500<br>(provided)                      | 10.1<br>(provided)                   | Batch                                  |



| Client Report                   |                           | Version | Report No.    | Date       |  |
|---------------------------------|---------------------------|---------|---------------|------------|--|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |  |

### 6.2. Point source maximum emissions rates (normal operating conditions)

| Point            |                   | D. H. Jawa Marras  | Average en | nission rate     | Duration of |
|------------------|-------------------|--------------------|------------|------------------|-------------|
| Source<br>Number | Point Source Name | Pollutant Name –   | (mg/Nm³)   | Averaging period | emissions   |
|                  |                   | Particulate matter | 40         | Hourly           | Batch       |
| EU0001           |                   | Carbon monoxide    | 75         |                  |             |
| EU0001 Cremator  | Clemator          | Oxides of nitrogen | 500        |                  |             |
|                  |                   | Mercury            | 0.05       |                  |             |

### 6.3. Point source maximum emissions rates (start-up, shut-down, upset and maintenance conditions)

No significant variation in the emissions profile is anticipated with start-up, shut-down, upset and maintenance conditions.



| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

### 6.4. Fugitive emissions (area and/ or line sources)

| RG/EU Code | Area and/or Line<br>Source<br>Description | Description of<br>Specific Measures | Timeframe for<br>Achieving<br>Required Control<br>Efficiency | Method of<br>Monitoring<br>Measures<br>Effectiveness | Contingency<br>Measures |
|------------|-------------------------------------------|-------------------------------------|--------------------------------------------------------------|------------------------------------------------------|-------------------------|
| N/A        | N/A                                       | N/A                                 | N/A                                                          | N/A                                                  | N/A                     |

### 6.5. Emergency Incidents

Not applicable.



Page 14 of 83

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

### 7. Impact of Enterprise on the Receiving Environment – Air Dispersion Model

### 7.1. Facility Information

### 7.1.1. Project Location

### **Proposed Project Area**

Figure 2 shows the portion of land on which the proposed crematorium is to be located. The adjacent buildings were modelled and were estimated to have a height of 6 metres. The position of the six stacks was estimated.



Figure 2: Satellite Map Showing the Site



| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

### Area Maps

A satellite map showing the 10 km surrounding the site is in Figure 3 below. Topographical features like mountains and the ocean are visible.

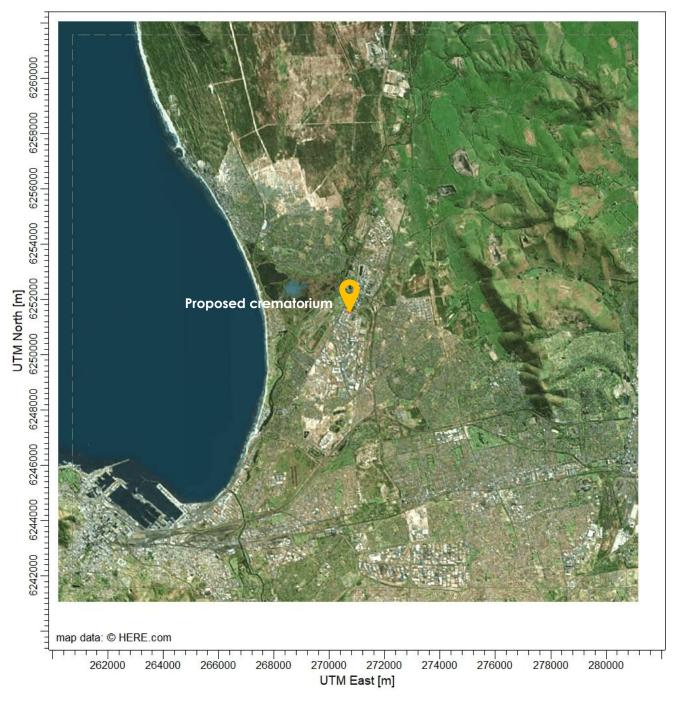



Figure 3: Satellite Map Showing the Area 10 km from the Proposed Crematorium



Page 16 of 83

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

A street map of the 10 km surrounding the site is shown in Figure 4. Roads and railroads are indicated.

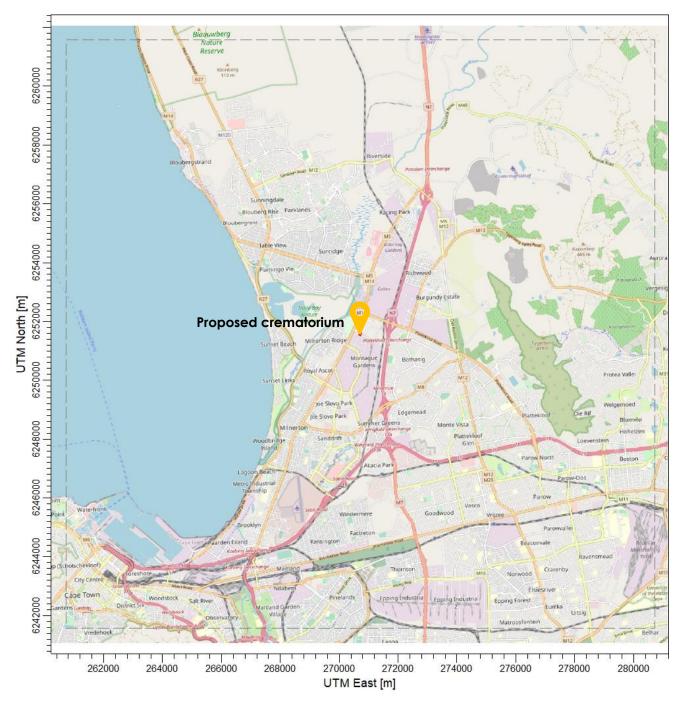



Figure 4: Satellite Map Showing the Area 10 km from the Proposed Crematorium



Page 17 of 83

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

Hospitals (indicated by red markers) and clinics/health care centres (indicated by green markers) are shown in Figure 5.

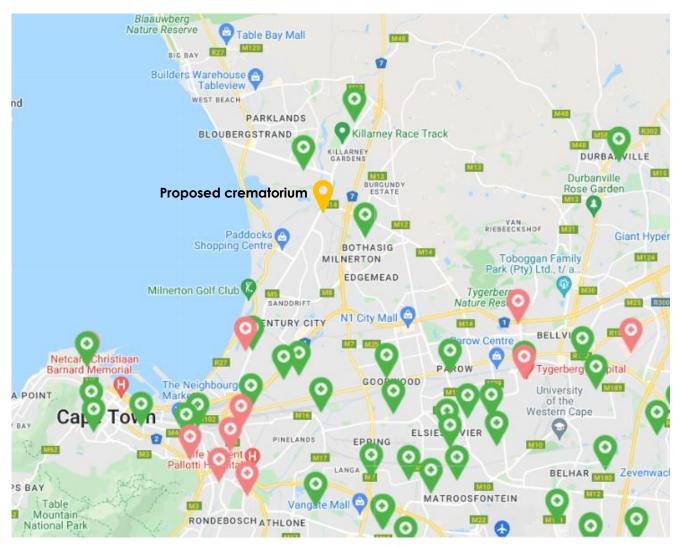



Figure 5: Street Map Showing Hospitals, Clinics and Health Care Centres in the Area 10 km from the Proposed Crematorium<sup>5</sup>

140 schools were identified in the 10 km surrounding the site, and these were too numerous to mark on the map. Schools surround the site in every direction, but none are located in the industrial area of Montague Gardens in which the crematorium is to be located. The closest schools are those in the residential areas surrounding Montague Gardens. The closest points to the proposed crematorium on the boundaries of the surrounding residential areas have been identified as discrete sensitive receptors in the air dispersion model. A list of the schools that were identified are shown in Table 1.



Page 18 of 83

<sup>&</sup>lt;sup>5</sup> https://www.westerncape.gov.za/static/health-facilities/

| С               | lient            | Report                    | Version | Report No.    | Date       |
|-----------------|------------------|---------------------------|---------|---------------|------------|
| Sharples Enviro | nmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

### Table 1: Schools Surrounding the Proposed Crematorium

| School                              | Distance  | School                                                        | Distance  | School                                                                       | Distance  |
|-------------------------------------|-----------|---------------------------------------------------------------|-----------|------------------------------------------------------------------------------|-----------|
| CBC St Johns                        | 4.8 km N  | Parow Preparatory School                                      | 7.8 km SE | Meerendal Pre-primary School                                                 | 9.9 km S  |
| Curro Academy Sandown               | 5 km N    | Valhalla Primary School                                       | 7.9 km SE | Cannons Creek Independent<br>School                                          | 9.9 km S  |
| Shelanti Private School             | 5.3 km N  | Parow-Wes Primary School                                      | 8.0 km SE | Ready Steady Grow Montessori                                                 | 9.0 km S  |
| Oakview Academy                     | 2.7 km NE | Parow East Primary School                                     | 8.8 km SE | Purzelbaum German Playgroup                                                  | 8.9 km S  |
| Silverleaf Primary School           | 3.8 km NE | Elswood Secondary School                                      | 8.8 km SE | Red Roots Pre-Primary                                                        | 8.6 km S  |
| Sophakama Primary School            | 3.8 km NE | Riebeck Straat Primary School                                 | 9.0 km SE | Elda Mahlentle Primary School                                                | 1.3 km SW |
| Dunoon Primary School               | 3.8 km NE | Leonsdale Primary School                                      | 9.1 km SE | Seal College                                                                 | 2.2 km SW |
| Du Noon Educare                     | 4. km NE  | Elswood Primary School                                        | 9.2 km SE | Mother Goose Playschool Milnerton                                            | 2.3 km SW |
| Inkwenkwezi Secondary School        | 4.7 km NE | The Settlers High School                                      | 9.4 km SE | Seamount Primary School                                                      | 2.6 km SW |
| Vissershok Primary School           | 9.4 km NE | Boston Primary School                                         | 9.8 km SE | Marconi Beam Primary School                                                  | 2.9 km SW |
| Wolraad Woltemade Primary School    | 1.4 km E  | Vredelust Primary School                                      | 9.9 km SE | Milnerton High School                                                        | 3.1 km SW |
| ACVV De Grendel Creche              | 1.7 km E  | Parow Valley Primary School                                   | 9.9 km SE | Milnerton Primary School                                                     | 3.3 km SW |
| Cayden's School                     | 2.0 km E  | Webner Street Primary School                                  | 10 km SE  | Milnerton Pre Primary School                                                 | 4.5 km SW |
| Tafelberg School                    | 2.1 km E  | Ruyterwacht Preparatory School                                | 8.4 km S  | Tygerhof Primary School                                                      | 4.7 km SW |
| Piccolo Montessori School           | 2.2 km E  | Koos Sadie Primary School                                     | 7.0 km S  | Woodbridge Primary School                                                    | 5.1 km SW |
| The Learning Tree Educare           | 2.6 km E  | Thornton Primary School                                       | 8.1 km S  | Happy Little Educare                                                         | 5.8 km SW |
| Curro Burgundy Primary School       | 2.7 km E  | Mosesh Primary School                                         | 10 km S   | Holy Cross Brooklyn                                                          | 6.4 km SW |
| Riverside College and Independent   | 2.8 km E  |                                                               | 7.0 km S  | Eve's Shoe Educare                                                           | 6.4 km SW |
| School                              |           | Emmanuel Christian Academy                                    |           |                                                                              |           |
| Maureen's Daycare                   | 3.2 km E  | Goodwood Park Primary School                                  | 6.1 km S  | Childcare at Home                                                            | 6.5 km SW |
| Sugar n Spice Playschool            | 3.6 km E  | Klein Tygerdal Preprimary                                     | 5.9 km S  | TOTs Nursery                                                                 | 6.6 km SW |
| Chicadees Aftercare                 | 3.7 km E  | Goodwood Park Bewaarskool                                     | 5.4 km S  | Buren High School                                                            | 6.9 km SW |
| Protea Valley Educare               | 8.3 km E  | Akasiapark Primary School<br>Kings and Queens Pre-Primary and | 4.4 km S  | Ysterplaat Junior Primary School                                             | 7.1 km SW |
| Creative Minds Learning Studio      | 8.4 km E  | Primary School                                                | 3.3 km S  | Watersprite Nursery School                                                   | 7.2 km SW |
| Kideo Kids                          | 8.5 km E  | Curro Century City High School                                | 3.5 km S  | Focus College                                                                | 7.2 km SW |
| Welgemoed Preprimary School         | 8.5 km E  | Curro Castle Century City                                     | 3.5 km S  | Hidayatul Islam Primary School                                               | 7.4 km SW |
| Protea Valley Montessori School     | 8.7 km E  | Curro Century City Primary School                             | 3.5 km S  | Ysterplaat Primary School                                                    | 7.5 km SW |
| One 2Play                           | 8.8 km E  | GROW with Tiny Queens and Kings<br>Educare Centre             | 3.5 km S  | Holy Cross Convent                                                           | 8.1 km SW |
| Laerskool Welgemoed                 | 9.2 km E  | WD Hendricks Primary                                          | 5.8 km S  | Maitland Secondary School                                                    | 8.4 km SW |
| Die Ark Speelskool                  | 9.9 km E  | Sunderland Primary School                                     | 6.0 km S  | Usasazo Secondary School                                                     | 8.5 km SW |
| Bosmansdam High School              | 1.4 km SE | Windermere High School                                        | 6.2 km S  | Koeberg Primary School                                                       | 8.6 km SW |
| Bothasig Preprimary School          | 1.9 km SE | Wingfield Primary School                                      | 6.4 km S  | Garden Village Primary School                                                | 9.7 km SW |
| Bosmansdam Primary School           | 2.0 km SE | Kensington High School                                        | 6.5 km S  | Liberte School                                                               | 0.9 km W  |
| Edgemead Primary School             | 3.0 km SE | James Academy                                                 | 6.7 km S  | Alpha Montessori                                                             | 2.5 km W  |
| Edgemead Pre-Primary School         | 3.2 km SE | St John's RC Primary School                                   | 6.7 km S  | Table View Primary School                                                    | 2.1 km NW |
| The Village Educare and Pre-Primary | 3.2 km SE | Kenmere Primary School                                        | 6.9 km S  | Sunridge Circle Primary School                                               | 2.6 km NW |
| School<br>Edgemead High School      | 3.6 km SE | Windermere Primary School                                     | 7.2 km \$ | Parklands College Junior<br>Preparatory and Christopher Robin<br>Pre-Primary | 3.9 km NW |
| Joe Simon Pre-Primary School        | 4.2 km SE | Factreton Primary                                             | 6. 9 km S | Parklands College Senior<br>Preparatory                                      | 4.0 km NW |
| Mountain View Academy               | 4.4 km SE | HJ Kroneberg Primary School                                   | 7.4 km S  | Bloubergrant Primary School                                                  | 5 km NW   |
| Oakland Academy School              | 4.4 km SE | Greens'cool                                                   | 8 km S    | Blouberg International School                                                | 5.3 km NW |
| Monte Vista Primary School          | 4.5 km SE | Oude Molen Technical High School                              | 8.3 km S  | Bloberg Ridge Primary School                                                 | 5.7 km NW |
| Buzzi Bees Pre-Primary School       | 4.7 km SE | Pinelands North Primary School                                | 8.5 km S  | Sunningdale Private School                                                   | 5.7 km NW |
| Panorama Primary School             | 5.1 km SE | La Gratitude Pre-Primary School                               | 9.1 km S  | West Coast Christian School                                                  | 6.1 km NW |
| Panorama Preprimary School          | 5.1 km SE | Pinehurst Primary School                                      | 9.1 km S  | Parklands College Secondary                                                  | 6.2 km NW |
| Kings School Goodwood               | 5.7 km SE | Pinelands High School                                         | 9.5 km S  | Faculty<br>Elkanah House High School                                         | 6.4 km NW |
| Parow North Primary School          | 6.7 km SE | Qunatum Leap Education                                        | 9.2 km S  | Generations School Sunningdale                                               | 6.6 km NW |
| Hoerskool President High School     | 7.2 km SE | First Steps Daycare                                           | 9.4 km S  | Sunningdale Primary School                                                   | 7 km NW   |
|                                     |           |                                                               |           |                                                                              |           |
| Parow Primary School                | 7.8 km SE | Smart Start Daycare                                           | 9.3 km S  | Rallim Preparatory School                                                    | 8.0 km NW |



| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

Considering that the proposed crematorium is to be located in a large industrial area, the site is surrounded by numerous contributors to air pollution, including Astron Energy, Permoseal, BP, Engen, Cape Precious Metals, Gayatri Paper and Novus Printing works. The contribution of these sources to air pollution is taken into account when the cumulative impact of the proposed crematorium on air quality is assessed. This is because the baseline data that is used in this assessment already reflects the effect of the existing contributors to air pollution in the area.

On-site meteorological data was obtained from the WRF-MMIF model and thus no meteorological stations have been indicated on the map.

A regional map of the area 50 km from the site is shown below, again with topographical features indicated.

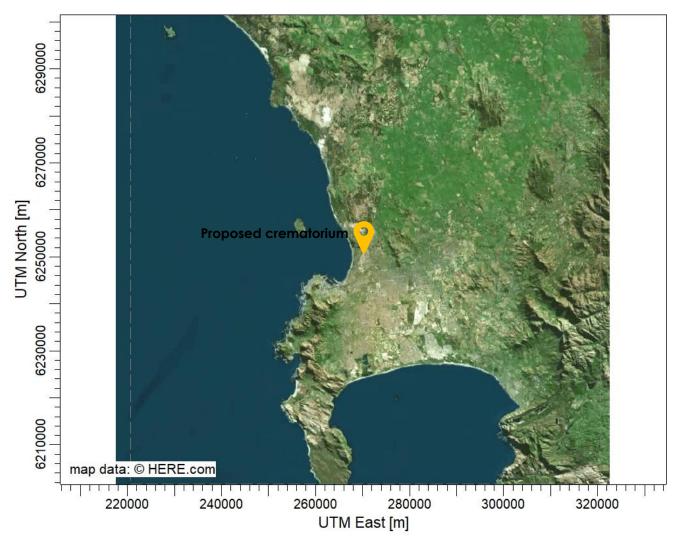



Figure 6: Map Showing the Area 50 km from the Proposed Crematorium



Page 20 of 83

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

### 7.1.2. Geophysical and Elevation Data

Land use in the 3 km surrounding the site has less than 35% vegetation coverage, and thus the entire area was determined to be urban. Shuttle Radar Topography Mission (SRTM) 1 Version 3 (30-metre resolution) elevation data was obtained from WebGIS.



Page 21 of 83

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

### 7.2. Emissions Characterisation

### 7.2.1. Emissions Characteristics

Emissions from the proposed crematorium are anticipated to be only from the six cremators themselves which have been identified as point sources. LPG is to be used as fuel for the cremators, and no fugitive emissions are anticipated from the LPG tanks.

The proposed crematorium will be classified as an air quality listed activity under Subcategory 8.2: *Crematoria and Veterinary Waste Incineration* of G.N. 893 of 2013, as amended. The pollutants that have been identified in G.N. 893 of 2013 from Subcategory 8.2 activities as potentially having a significant effect on the environment are particulate matter (PM), carbon monoxide (CO), the oxides of nitrogen (NO<sub>x</sub>) and mercury (Hg). Emissions limits for these pollutants are shown in the excerpt from G.N. 893 below (Figure 7).

| LIGECTINTIAN          | Cremation of hum<br>incineration of veteria |          |                                                                                                 |  |
|-----------------------|---------------------------------------------|----------|-------------------------------------------------------------------------------------------------|--|
| Application:          | All installations                           |          |                                                                                                 |  |
| Substance or mixtu    | ire of substances                           | Plant    | mailing under namel conditions of 449/                                                          |  |
| Common name           | Chemical<br>symbol                          | status   | mg/Nm <sup>3</sup> under normal conditions of 11%<br>O <sub>2</sub> , 273 Kelvin and 101.3 kPa. |  |
| Derticulate motter    | N/A                                         | New      | 40                                                                                              |  |
| Particulate matter    | N/A                                         | Existing | 250                                                                                             |  |
| O                     | 00                                          | New      | 75                                                                                              |  |
| Carbon monoxide       | co                                          | Existing |                                                                                                 |  |
| Outday of allogen     | NO <sub>x</sub> expressed                   | New      | 500                                                                                             |  |
| Oxides of nitrogen    | as NO <sub>2</sub>                          | Existing | 1000                                                                                            |  |
| Mercury (Applicable t | 0 11-                                       | New      | 0.05                                                                                            |  |
| human cremation only  |                                             | Existing | 0.05                                                                                            |  |

Subcategory 8.2: Crematoria and Veterinary Waste Incineration

### Figure 7: Emissions Limits for Crematoria

Additionally, comments received after the draft Basic Assessment Report, and version 2 of this Atmospheric Impact Report requested that numerous additional pollutants be investigated. Of these, benzene and lead were determined to be of particular interest due to the existence of National Ambient Air Quality Standards (NAAQS) for these pollutants.


### 7.2.2. Operating Scenarios

Normal operating conditions were simulated in the dispersion model. Start-up, standby and shutdown conditions were not simulated, as these are not expected to be significantly different to normal operating conditions.

### 7.2.3. Emissions Inventory and Source Parameters

As per Section 3.3 of the Code of Practice for Air Dispersion Modelling in Air Quality Management in South Africa, 2014 (referred to hereafter as the Code of Practice)<sup>6</sup>, the minimum emissions standards

<sup>&</sup>lt;sup>6</sup> Contained in the Regulations Regarding Air Dispersion Modelling (G.N.R. 533 of 2014)





| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

(MESs) for Subcategory 8.2 were used as the basis for the emissions inventory for the proposed crematorium, where possible. These standards are given in concentration units of mg/Nm<sup>3</sup>. However, for use in AERMOD, an emission rate in g/s is required. The flow rate of gas in the stack is needed to convert the concentration into an absolute emission rate. A gas flow rate of 3 500 m<sup>3</sup>/h was provided by the applicant, along with an approximate stack temperature of 600 °C.

The minimum emissions standards and the provided flow rate were used to calculate the emissions rates of the legislated pollutants for Subcategory 8.2 from each cremator. A stack temperature of 600 °C was used, along with a stack pressure of 101.325 kPa (approximate ambient pressure at sea level), a moisture content of 2% (a conservative estimate from 27 sampling campaigns conducted by Yellow Tree on 14 cremators), and an oxygen concentration of 11%.

| Pollutant | Concentration (mg/Nm <sup>3</sup> ) | Emission Rate (g/s) |
|-----------|-------------------------------------|---------------------|
| РМ        | 40                                  | 0.012               |
| со        | 75                                  | 0.022               |
| NOx       | 500                                 | 0.15                |
| Mercury   | 0.05                                | 0.000015            |

While there is only an MES for total PM, the National Ambient Air Quality Standards (NAAQS) are for  $PM_{10}$  (the fraction of PM that is smaller than 10  $\mu$ m) and  $PM_{2.5}$  (the fraction of PM that is smaller than 2.5  $\mu$ m). Yellow Tree looked to the EEA/EMEP emissions factors for crematoria for further information regarding the split between  $PM_{10}$  and  $PM_{2.5}$  in total PM (Figure 8).<sup>7</sup>

Tion 1 omission factors for source sategony EC1by Cremation cremation of

Table 2.1

|                     | 2         | Tier 1 default | emission fac                            | tors             |                          |
|---------------------|-----------|----------------|-----------------------------------------|------------------|--------------------------|
|                     | Code      | Name           |                                         |                  |                          |
| NFR Source Category | 5.C.1.b.v | Cremation      |                                         |                  |                          |
| Fuel                | NA        |                |                                         |                  |                          |
| Not applicable      | HCH, NH   | 3              |                                         |                  |                          |
| Not estimated       | BC        |                |                                         |                  |                          |
|                     |           |                | (100 (100 (100 (100 (100 (100 (100 (100 | nfidence<br>rval |                          |
| Pollutant           | Value     | Unit           | Lower                                   | Upper            | Reference                |
| NOx                 | 0.825     | kg/body        | 0.0825                                  | 8.25             | Santarsiero et al. (2005 |
| CO                  | 0.140     | kg/body        | 0.0140                                  | 1.40             | Santarsiero et al. (2005 |
| NMVOC               | 0.013     | kg/body        | 0.0013                                  | 0.13             | CANA (1993)              |
| SO <sub>2</sub>     | 0.113     | kg/body        | 0.0113                                  | 1.13             | Santarsiero et al. (2005 |
| TSP                 | 38.56     | g/body         | 3.856                                   | 385.6            | WebFIRE, 1992            |
| PM <sub>10</sub>    | 34.70     | g/body         | 3.470                                   | 347.0            | WebFIRE, 1992            |
| PM <sub>2.5</sub>   | 34.70     | g/body         | 3.470                                   | 347.0            | WebFIRE, 1992            |
| Pb                  | 30.03     | mg/body        | 3.003                                   | 300.3            | WebFIRE, 1992            |
| Cd                  | 5.03      | mg/body        | 0.503                                   | 50.3             | WebFIRE, 1992            |
| Hg                  | 1.49      | g/body         | 0.149                                   | 14.9             | WebFIRE, 1992            |

Figure 8: Excerpt from EEA/EMEP Chapter 5C1bv

<sup>&</sup>lt;sup>7</sup> https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/5-waste/5-c-1-b-v/view



Page 23 of 83

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

The ratios of TSP (total PM) to  $PM_{10}$  and  $PM_{2.5}$  emissions factors were used to estimate  $PM_{10}$  and  $PM_{2.5}$  emission rates.

| Pollutant         | Concentration (mg/Nm <sup>3</sup> ) | Emission Rate (g/s) |
|-------------------|-------------------------------------|---------------------|
| РМ                | 40                                  | 0.012               |
| СО                | 75                                  | 0.022               |
| NO <sub>x</sub>   | 500                                 | 0.15                |
| Mercury           | 0.05                                | 0.000015            |
| PM10              | -                                   | 0.011               |
| PM <sub>2.5</sub> | -                                   | 0.011               |

Table 3: Emissions Rates Including PM10 and PM2.5

To verify the estimated emissions rates for PM<sub>10</sub>, PM<sub>2.5</sub>, CO, NO<sub>x</sub> and Hg, the EEA/EMEP emissions factors were used, along with the maximum proposed cremation rate of eight cadavers in an eight-hour shift per cremator. Additionally, the EEA, EMEP emissions factors were used to estimate benzene and lead emissions. It was assumed that all non-methane volatile organic compounds (NMVOCs) were benzene. This is a very conservative assumption.

### Table 4: Verification of Emission Rates Using Emissions Factors

| Pollutant                            | Emissions Factor<br>(g/cadaver) | Cadavers<br>/shift | Emission<br>(g) | Hours | Emission Rate<br>(g/s) |
|--------------------------------------|---------------------------------|--------------------|-----------------|-------|------------------------|
| PM                                   | 38.56                           | 8                  | 308.48          | 8     | 0.011                  |
| СО                                   | 140                             | 8                  | 1120            | 8     | 0.039                  |
| NOx                                  | 825                             | 8                  | 6600            | 8     | 0.23                   |
| Hg                                   | 1.49                            | 8                  | 11.92           | 8     | 0.00041                |
| PM10                                 | 34.7                            | 8                  | 277.6           | 8     | 0.0096                 |
| PM <sub>2.5</sub>                    | 34.7                            | 8                  | 277.6           | 8     | 0.0096                 |
| NMVOCs<br>(assumed to be<br>benzene) | 13                              | 8                  | 104.0           | 8     | 0.0036                 |
| Lead                                 | 0.03                            | 8                  | 0.24            | 8     | 0.000083               |



| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

It was reassuring to find that the emission rates that were estimated using both methods were similar, as shown below.

| Pollutant         | MES<br>(g/s) | Emissions Factors<br>(g/s) |
|-------------------|--------------|----------------------------|
| PM                | 0.012        | 0.011                      |
| СО                | 0.022        | 0.039                      |
| NOx               | 0.15         | 0.23                       |
| Hg                | 0.000015     | 0.00041                    |
| PM10              | 0.011        | 0.0096                     |
| PM <sub>2.5</sub> | 0.011        | 0.0096                     |

As required by the Code of Practice, the emission rates calculated using the MESs were used in this study, apart from NMVOCs (conservatively assumed to comprise solely of benzene) and lead for which no MESs exist.



Page 25 of 83

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

### 7.3. Meteorological Data

On-site and upper air WRF-MMIF meteorological data, for a period of three full calendar years (2019, 2020 and 2021), was purchased from Lakes Environmental. The WRF model is recommended for use in the Code of Practice. The base station elevation is 54.86 metres. The data was processed using AERMET View Version 10.2.1. No missing hours or calm periods were noted.



Page 26 of 83

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

### 7.4. Ambient Impact Analysis

### 7.4.1. National Ambient Air Quality Standards

South Africa's National Ambient Air Quality Standards (NAAQS) were promulgated in G.N. 1210 of 2009, with further standards for PM<sub>2.5</sub> promulgated in G.N. 486 of 2012. The following standards are applicable to PM<sub>10</sub>, PM<sub>2.5</sub>, CO and NO<sub>2</sub>. There are no standards for mercury.

| Period   | Concentration        | Exceedence | Compliance Date              |
|----------|----------------------|------------|------------------------------|
| 24 hours | 120µg/m <sup>3</sup> | 4          | Immediate - 31 December 2014 |
| 24 hours | 75 µg/m <sup>3</sup> | 4          | 1 January 2015               |
| 1 year   | 50 µg/m <sup>3</sup> | 0          | Immediate - 31 December 2014 |
| 1 year   | 40 µg/m <sup>3</sup> | 0          | 1 January 2015               |



| CE unalmal           |                                                                                              |                                                                            |
|----------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 65 µg/m <sup>3</sup> | 4                                                                                            | Immediate - 31 December 2015                                               |
| 40 µg/m <sup>3</sup> | 4                                                                                            | 1 January 2016 - 31 December 2029                                          |
| 25 µg/m <sup>3</sup> | 4                                                                                            | 1 January 2030                                                             |
| 25 µg/m <sup>3</sup> | 0                                                                                            | Immediate - 31 December 2015                                               |
| 20 µg/m <sup>3</sup> | 0                                                                                            | 1 January 2016 - 31 December 2029                                          |
| 15 µg/m <sup>3</sup> | 0                                                                                            | 1 January 2030                                                             |
|                      | 25 µg/m <sup>3</sup><br>25 µg/m <sup>3</sup><br>20 µg/m <sup>3</sup><br>15 µg/m <sup>3</sup> | 25 µg/m <sup>3</sup> 4<br>25 µg/m <sup>3</sup> 0<br>20 µg/m <sup>3</sup> 0 |

#### Figure 10: PM<sub>2.5</sub> NAAQS

| Averaging<br>Period                            | Concentration                  | Frequency of<br>Exceedence | Compliance Date |
|------------------------------------------------|--------------------------------|----------------------------|-----------------|
| 1 hour                                         | 30 mg/m3 (26 ppm)              | 88                         | Immediate       |
| 8 hour (calculated<br>on 1 hourly<br>averages) | 10 mg/m <sup>3</sup> (8.7 ppm) | 11                         | Immediate       |

### Figure 11: CO NAAQS

| Averaging<br>Period | Concentration             | Frequency of<br>Exceedence | Compliance Date          |
|---------------------|---------------------------|----------------------------|--------------------------|
| 1 hour              | 200 µg/m3 (106 ppb)       | 88                         | Immediate                |
| 1 year              | 40 µg/m3 (21 ppb)         | 0                          | Immediate                |
| The ref             | erence method for the ana | lysis of nitrogen d        | ioxide shall be ISO 7996 |

### Figure 12: NO<sub>2</sub> NAAQS



| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

3.5 National Ambient Air Quality Standards for Benzene ( $C_6H_6$ )

| 1 year | 10 µg/m3 (3.2 ppb)            | 0 | Immediate - 31 December 2014 |
|--------|-------------------------------|---|------------------------------|
| 1 year | 5 µg/m <sup>3</sup> (1.6 ppb) | 0 | 1 January 2015               |

### Figure 13: Benzene NAAQS

| 3.6 | National Ambier | nt Air Quality Stand | lards for Lead (Pb) |
|-----|-----------------|----------------------|---------------------|
|     |                 |                      |                     |

| Averaging        | Concentration              | Frequency of      | Compliance Date      |
|------------------|----------------------------|-------------------|----------------------|
| Period<br>1 year | 0.5 µg/m <sup>3</sup>      | Exceedence<br>0   | Immediate            |
| Т                | he reference method for th | e analysis of lea | ad shall be ISO 9855 |

Figure 14: Lead NAAQS

For PM<sub>10</sub> and PM<sub>2.5</sub>, daily average and annual average standards are specified. Four exceedances of the daily average standard are permitted in each calendar year.

For CO, hourly and 8-hourly average standards are specified. 88 exceedances of the hourly standard are permitted, and 11 exceedances of the 8-hourly standard are permitted in each calendar year.

For NO<sub>2</sub>, hourly and annual standards are specified, with 88 exceedances of the hourly standard permitted in each calendar year.

For benzene and lead, annual standards are specified.

### 7.4.2. International Guidelines

No NAAQS are applicable to mercury. Internationally used standards were sought for use as guidelines in this report, however, it appears that ambient mercury standards are not commonly implemented internationally. Only one World Health Organization (WHO) annual guideline of 1  $\mu$ g/m<sup>3</sup> was found, and this was estimated from the lowest-observed-adverse-effect levels (LOAELs). Thus, an annual guideline of 1  $\mu$ g/m<sup>3</sup> was used in this report.

### **Table 6: Mercury Ambient Guidelines**

| Averaging Period | International Standard | Source                                                                                         |
|------------------|------------------------|------------------------------------------------------------------------------------------------|
| Annual           | l μg/m³                | WHO Regional Office for Europe,<br>Copenhagen, Denmark, Air Quality<br>Guidelines Chapter 6.98 |

<sup>&</sup>lt;sup>8</sup> https://www.euro.who.int/\_\_data/assets/pdf\_file/0004/123079/AQG2ndEd\_6\_9Mercury.PDF



| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

### 7.4.3. Background Concentrations

Ambient air quality monitoring data from four ambient air quality monitoring stations were sourced from the South African Air Quality Information System (SAAQIS). Table 7 shows the monitoring stations from which data was sourced, as well as the distance between the station and the proposed crematorium site.

| Table 7: Ambient Air Qu | ality Monitoring Stations |
|-------------------------|---------------------------|
|-------------------------|---------------------------|

| Station                            | Distance and Direction from the Site | Parameters Monitored                                       |
|------------------------------------|--------------------------------------|------------------------------------------------------------|
| Potsdam                            | 1.5 km NNE                           | Benzene                                                    |
| Bothasig                           | 2.0 km SW                            | NO <sub>2</sub>                                            |
| Table View                         | 3.6 km NNW                           | PM10, PM2.5, NO2                                           |
| Edgemead<br>(Acacia Power Station) | 4.0 km SE                            | PM <sub>10</sub> , NO <sub>2</sub>                         |
| Goodwood                           | 7.0 km SE                            | PM10, CO, NO2                                              |
| Maitland                           | 9.2 km SW                            | PM <sub>10</sub> , PM <sub>2.5</sub> , CO, NO <sub>2</sub> |
| Foreshore                          | 11.3 km SW                           | Benzene                                                    |
| Khayelitsha                        | 21.9 SE                              | Benzene                                                    |

No ambient mercury data or lead is available on SAAQIS, however, the Global Atmospheric Watch Station (GAWS) at Cape Point measures ambient mercury concentrations. Annual median data (specified to not be significantly different from average data) from the station between 2007 and 2017 was found in an academic paper and is shown in Figure 33<sup>9</sup>.



<sup>&</sup>lt;sup>9</sup> https://acp.copernicus.org/articles/20/7683/2020/

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

### **PM**<sub>10</sub>

The following graphs show the daily average PM<sub>10</sub> concentrations from Table View, Edgemead, Goodwood, and Maitland (Figure 15, Figure 16, Figure 17, and Figure 18, respectively).

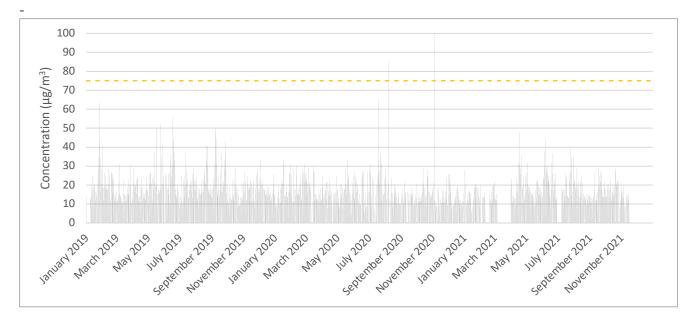



Figure 15: Daily Average PM<sub>10</sub> Concentrations, Table View

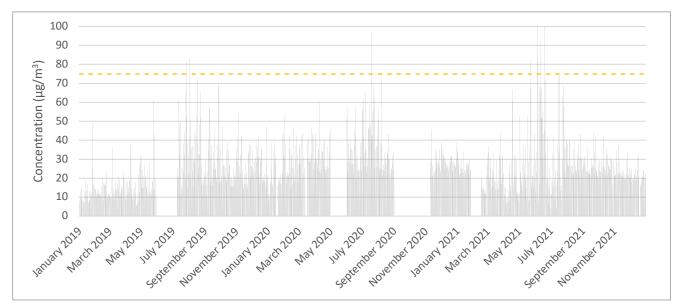



Figure 16: Daily Average PM<sub>10</sub> Concentrations, Edgemead



| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

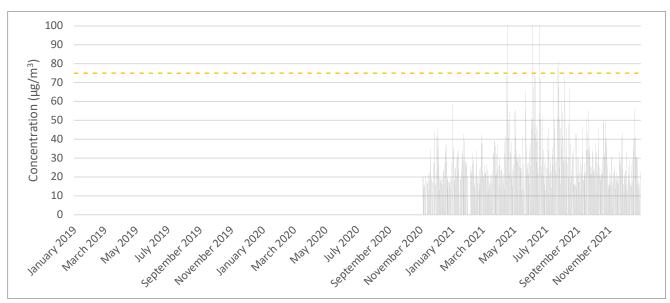



Figure 17: Daily Average PM10 Concentrations, Goodwood

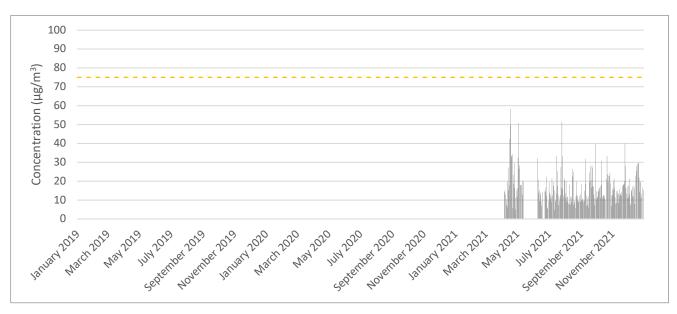



Figure 18: Daily Average PM<sub>10</sub> Concentrations, Maitland



Page 31 of 83

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

| Number of exceedances per annum | 2019 | 2020 | 2021 | Limit |
|---------------------------------|------|------|------|-------|
| Table View <sup>10</sup>        | 0    | 2    | 0    | 4     |
| Edgemead <sup>11</sup>          | 2    | 1    | 5    | 4     |
| Goodwood <sup>12</sup>          | -    | 0    | 6    | 4     |
| Maitland <sup>13</sup>          | -    | -    | 0    | 4     |

### Table 9: Annual PM<sub>10</sub> Ambient Air Quality Monitoring Data Summary

| Concentration (µg/m³) | 2019 | 2020 | 2021 | Limit |
|-----------------------|------|------|------|-------|
| Table View            | 19.8 | 21.0 | 17.6 | 40    |
| Edgemead              | 23.0 | 31.8 | 26.8 | 40    |
| Goodwood              | -    | 23.0 | 30.6 | 40    |
| Maitland              | -    | -    | 16.7 | 40    |

Of the three stations, only Edgemead and Goodwood had exceedances of the daily average standard, both in 2021. The Table View station is closest to the site (3.6 km), followed by the Edgemead station (4.0 km). Both had relatively good data availability, and thus both have been used as baselines in this assessment. It should be noted that Edgemead showed more exceedances of the daily average standard than Table View, and showed higher annual averages.



 $<sup>^{\</sup>rm 10}$  87.6 % data availability over the three years

<sup>&</sup>lt;sup>11</sup> 82.5 % data availability over the three years

<sup>&</sup>lt;sup>12</sup> 37.2 % data availability over the three years

<sup>&</sup>lt;sup>13</sup> 21.3 % data availability over the three years

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

### PM<sub>2.5</sub>

Whereas the previous graphs revealed the *PM*<sub>10</sub> concentrations, the following graphs show the daily average *PM*<sub>2.5</sub> concentrations from Table View and Maitland (Figure 19 and Figure 20, respectively).

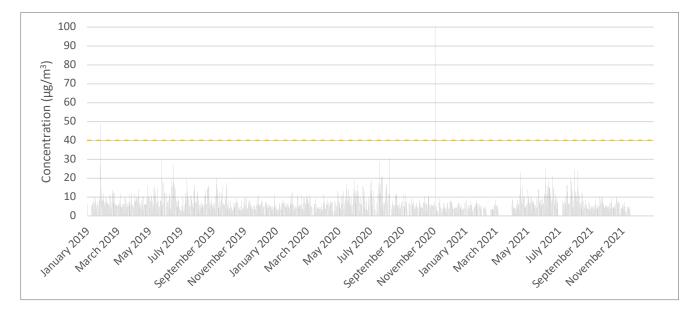



Figure 19: Daily Average PM<sub>2.5</sub> Concentrations, Table View

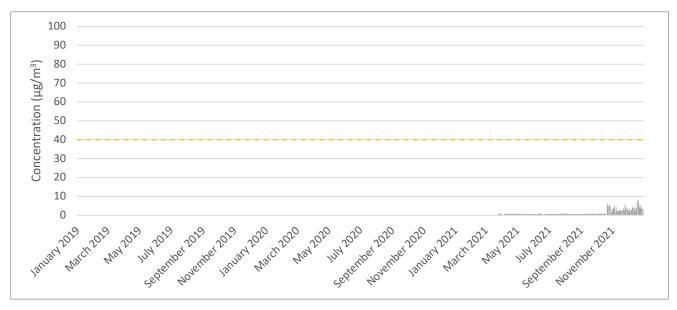



Figure 20: Daily Average PM<sub>2.5</sub> Concentrations, Maitland



Page 33 of 83

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

### Table 10: Daily PM<sub>2.5</sub> Ambient Air Quality Monitoring Data Summary

| Number of exceedances per annum | 2019 | 2020 | 2021 | Limit |
|---------------------------------|------|------|------|-------|
| Table View <sup>14</sup>        | 1    | 1    | 0    | 4     |
| Maitland <sup>15</sup>          | -    | -    | 0    | 4     |

### Table 11: Annual PM2.5 Ambient Air Quality Monitoring Data Summary

| Concentration<br>(µg/m³) | 2019 | 2020 | 2021 | Limit |
|--------------------------|------|------|------|-------|
| Table View               | 7.9  | 8.6  | 7.3  | 20    |
| Maitland                 | -    | -    | 1.6  | 20    |

Both the Table View and Maitland stations complied with the NAAQS for PM<sub>2.5</sub>. The Table View station is closest to the site and had the highest percentage of data availability, and thus the PM<sub>2.5</sub> data from Table View was used as the baseline for this assessment.



 $<sup>^{\</sup>rm 14}$  87.6 % data availability over the three years

<sup>&</sup>lt;sup>15</sup> 21.3 % data availability over the three years

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

### со

The following graphs show the hourly average and 8-hourly average CO concentrations at the Goodwood and Maitland stations (Figure 21, Figure 22, Figure 23 and Figure 24, respectively). Very limited data was available from the Goodwood station, with extremely high concentrations measured over a short period in 2020. It appears unlikely that this data is accurate, especially considering that this magnitude of CO concentration is expected in chimney stacks and is significantly higher than would be expected in ambient air. From the Maitland station, consistent data was only available from April 2021.

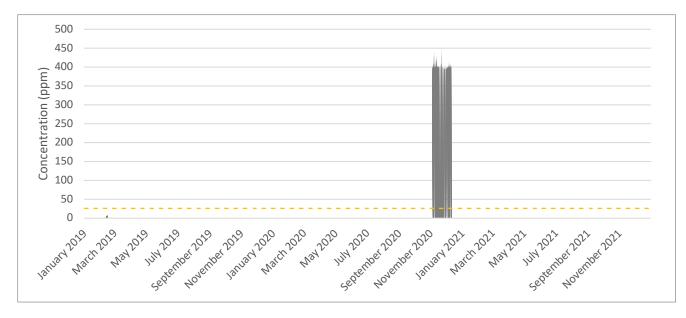



Figure 21: Hourly Average CO Concentrations, Goodwood

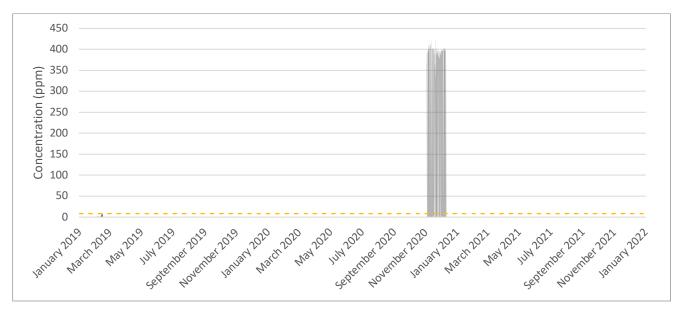



Figure 22: 8-Hourly Average CO Concentrations, Goodwood



Page 35 of 83

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

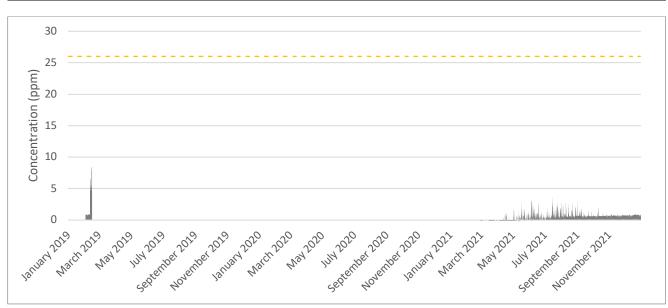



Figure 23: Hourly Average CO Concentrations, Maitland

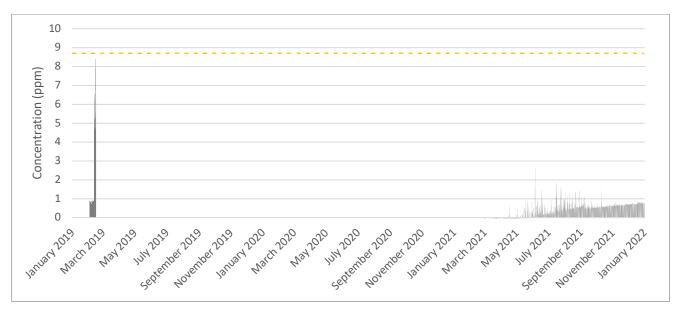



Figure 24: 8-Hourly Average CO Concentrations, Maitland



| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

#### Table 12: Hourly CO Ambient Air Quality Monitoring Data Summary

| Number of exceedances per annum | 2019 | 2020 | 2021 | Limit |
|---------------------------------|------|------|------|-------|
| Goodwood16                      | -    | 719  | -    | 88    |
| Maitland <sup>17</sup>          | 0    | -    | 0    | 88    |

#### Table 13: 8-Hourly CO Ambient Air Quality Monitoring Data Summary

| Number of exceedances per annum | 2019 | 2020 | 2021 | Limit |
|---------------------------------|------|------|------|-------|
| Goodwood <sup>18</sup>          | -    | 112  | -    | 11    |
| Maitland <sup>19</sup>          | 0    | _    | 0    | 11    |

As discussed, high CO concentrations were measured over a short period in 2020 at the Goodwood station. These exceeded the NAAQS, but it appears unlikely that this data is accurate. No exceedances were noted from the Maitland station, and the CO data from this station was used as the baseline for this assessment.



 $<sup>^{\</sup>rm 16}$  11.0 % data availability over the three years

<sup>&</sup>lt;sup>17</sup> 21.3 % data availability over the three years

<sup>18 11.0 %</sup> data availability over the three years

<sup>&</sup>lt;sup>19</sup> 21.3 % data availability over the three years

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

### NO<sub>2</sub>

The following graphs show the hourly average PM<sub>10</sub> concentrations from Bothasig, Table View, Edgemead, Goodwood, and Maitland (Figure 25, Figure 26, Figure 27, Figure 28 and Figure 29, respectively). It must be noted that these are presented in parts per billion (ppb) which is 1 000 times smaller in magnitude than the measure of parts per million (ppm) which was used for CO concentration.

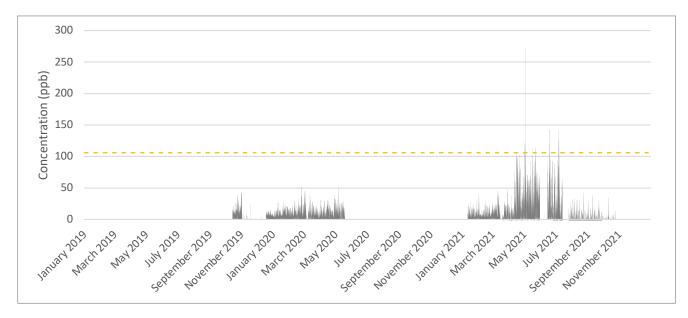



Figure 25: Hourly Average NO<sub>2</sub> Concentrations, Bothasig

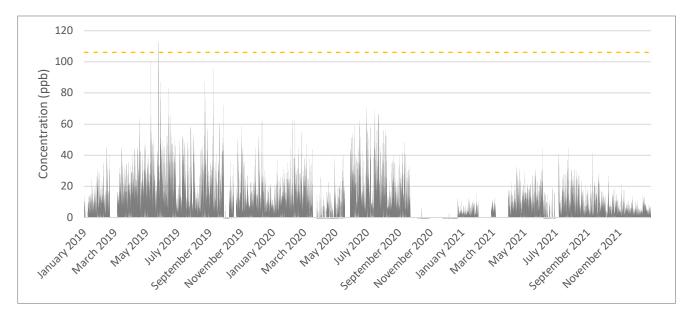



Figure 26: Hourly Average NO<sub>2</sub> Concentrations, Table View



Page 38 of 83



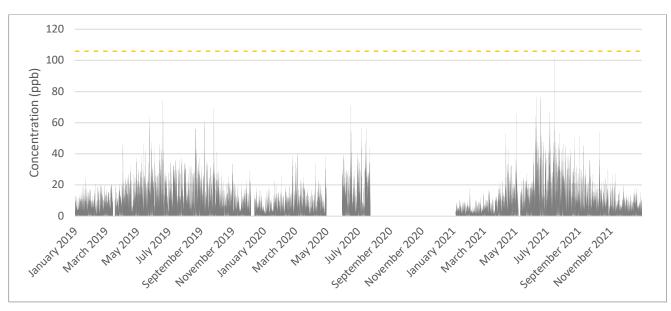



Figure 27: Hourly Average NO<sub>2</sub> Concentrations, Edgemead

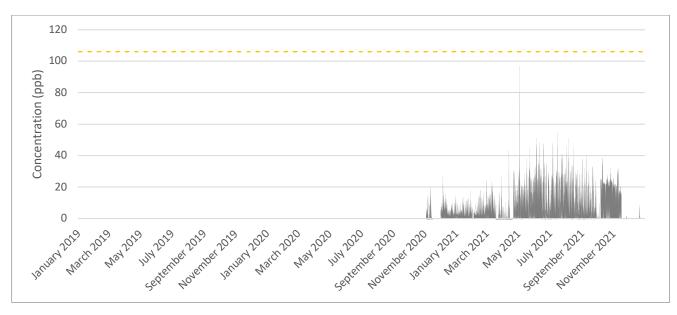



Figure 28: Hourly Average NO<sub>2</sub> Concentrations, Goodwood



| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

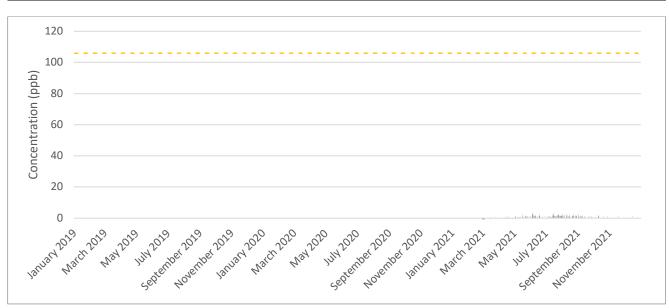



Figure 29: Hourly Average NO<sub>2</sub> Concentrations, Maitland

| Number of exceedances per annum | 2019 | 2020 | 2021 | Limit |
|---------------------------------|------|------|------|-------|
| Bothasig <sup>20</sup>          | 0    | 0    | 17   | 88    |
| Table View <sup>21</sup>        | 3    | 0    | 0    | 88    |
| Edgemead <sup>22</sup>          | 0    | 0    | 0    | 88    |
| Goodwood <sup>23</sup>          | -    | 0    | 0    | 88    |
| Maitland <sup>24</sup>          | -    | -    | 0    | 88    |

- <sup>21</sup> 82.4 % data availability over the three years
- <sup>22</sup> 78.8 % data availability over the three years <sup>23</sup> 30.3 % data availability over the three years
- <sup>24</sup> 26.8 % data availability over the three years



<sup>&</sup>lt;sup>20</sup> 37.6 % data availability over the three years

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

| Concentration<br>(ppb) | 2019 | 2020 | 2021 | Limit |
|------------------------|------|------|------|-------|
| Bothasig               | 8.8  | 6.8  | 9.5  | 21    |
| Table View             | 12.9 | 12.1 | 5.7  | 21    |
| Edgemead               | 9.5  | 8.4  | 8.7  | 21    |
| Goodwood               | -    | 3.5  | 8.9  | 21    |
| Maitland               | -    | -    | 7.7  | 21    |

No NO<sub>2</sub> exceedances were noted at any of the stations. The Table View and Edgemead stations are not as close to the site as the Bothasig site, however, had the highest percentage of data availability, and were used as the baselines for this assessment.



Page 41 of 83

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

#### Benzene

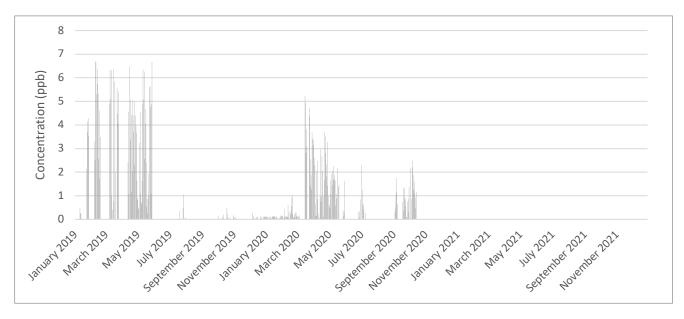



Figure 30: Daily Average Benzene Concentrations, Potsdam

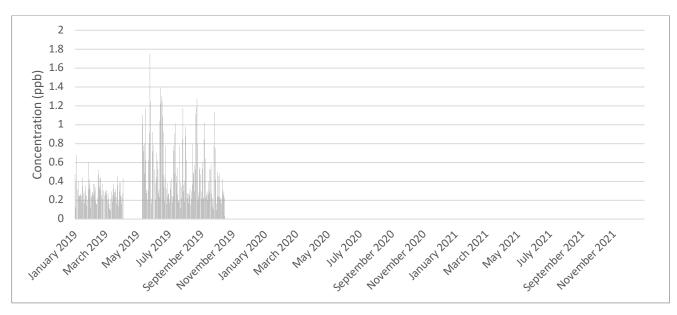



Figure 31: Daily Average Benzene Concentrations, Foreshore



| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

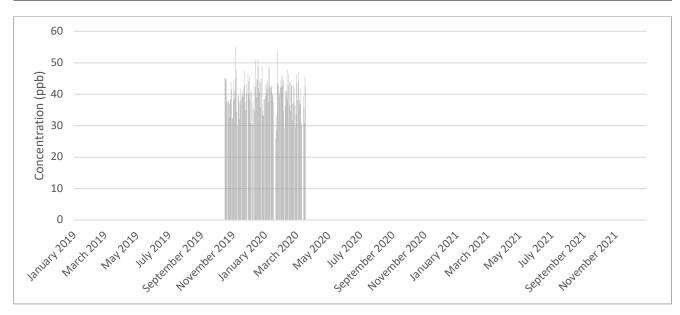



Figure 32: Daily Average Benzene Concentrations, Khayelitsha

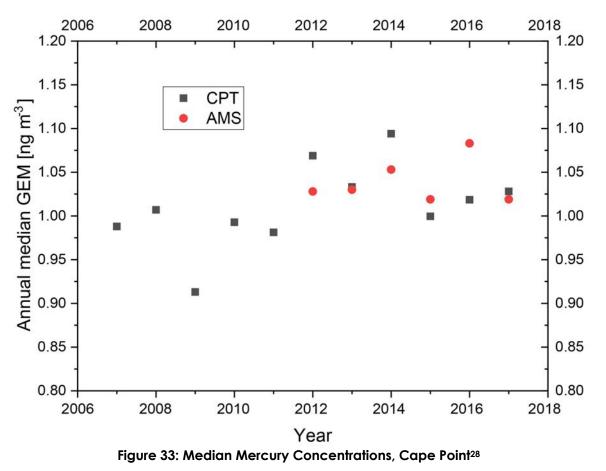
#### Table 16: Annual Benzene Ambient Air Quality Monitoring Data Summary

| Concentration<br>(ppb)    | 2019 | 2020 | 2021 | Limit |
|---------------------------|------|------|------|-------|
| Potsdam <sup>25</sup>     | 2.0  | 0.9  | -    | 1.6   |
| Foreshore <sup>26</sup>   | 0.4  | -    | -    | 1.6   |
| Khayelitsha <sup>27</sup> | 40.3 | 40.2 | -    | 1.6   |

Exceedances of the annual benzene standard were noted in 2019 at the Potsdam site (despite low data availability of 29.8 % over the 3 year period), and at the Khayelitsha site (also despite low data availability of 13.5 %). Data from the Potsdam site was used as the baseline for this study, as this site is the closest to the proposed crematorium and has the highest data availability of the three sites.



<sup>&</sup>lt;sup>25</sup> 29.8 % data availability over the three years


 $<sup>^{\</sup>rm 26}$  23.0 % data availability over the three years

 $<sup>^{\</sup>rm 27}$  13.5 % data availability over the three years

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

#### Mercury

Annual median mercury concentrations measured at the Cape Point GAWS station are shown by the grey squares in the graph below (Figure 33). These ranged from approximately 0.9 ng/m3 and  $1.1 \text{ ng/Nm}^3$  and were well below the WHO guideline of  $1 \mu \text{g/m}3$ .



<sup>&</sup>lt;sup>28</sup> Slemr, F., Martin, L., Labuschagne, C., Mkololo, T., Angot, H., Magand, O., Dommergue, A., Garat, P., Ramonet, M., and Bieser, J.: Atmospheric mercury in the Southern Hemisphere – Part 1: Trend and inter-annual variations in atmospheric mercury at Cape Point, South Africa, in 2007–2017, and on Amsterdam Island in 2012–2017, Atmos. Chem. Phys., 20, 7683–7692, https://doi.org/10.5194/acp-20-7683-2020, 2020.



| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

### 7.5. Modelling Procedure

### 7.5.1. Model Used

Based on Section 2.1.2 of the Code of Practice, a Level 2 assessment was used and the AERMOD model was chosen. The model was conducted using the AERMOD View Version 10.2.1 interface and AERMET View Version 10.2.1 pre-processor.

An elevated terrain height setting was chosen, as is the default setting for AERMOD. One land-use sector was used, and urban characteristics were selected (surface roughness of 1, Bowen ratio of 1.625 and Albedo of 0.2075).

#### 7.5.2. Modelled Emissions

| Source     | Source Location<br>(UTM)      | Pollutant         | MES (mg/Nm³) | Emission Rate (g/s) |
|------------|-------------------------------|-------------------|--------------|---------------------|
| Cremator 1 | X: 270739.96<br>Y: 6251577.46 | РМ                | 40           | 0.012               |
| Cremator 2 | X: 270732.32<br>Y: 6251579.83 | СО                | 75           | 0.022               |
| Cremator 3 | X: 270725.42<br>Y: 6251582.09 | NO <sub>x</sub>   | 500          | 0.15                |
| Cremator 4 | X: 270718.78<br>Y: 6251584.85 | Mercury           | 0.05         | 0.000015            |
| Cremator 5 | X: 270712.52<br>Y: 6251586.98 | PM10              | -            | 0.011               |
| Cremator 6 | X: 270706.01<br>Y: 6251589.36 | PM <sub>2.5</sub> | -            | 0.011               |

#### Table 17: Emissions Rates

### 7.5.3. Receptors

Three sets of receptors were used in this model:

- 1. A Cartesian plant boundary (indicated in red on the following map, Figure 34). Intermediate receptors were placed at 50 metre intervals along the boundary of the site. The plant boundary essentially acts as a set of receptors for the surrounding businesses and members of the public who do not work at the crematorium. The maximum concentrations at, and close to, the plant boundary were assessed.
- 2. Sensitive receptors at the closest point of six surrounding residential areas: Milnerton Ridge, Bothasig, Flamingo Vlei, Richwood, Dunoon and Phoenix (indicated with yellow markers on the following map, **Figure 34**),
- 3. A uniform cartesian grid with 50 metre spacing up to 500 metres from the crematorium (the ara of maximum impact), and 100-metre spacing beyond this (indicated by the grey grid and blue markers on the following map, Figure 34).



Page 45 of 83

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |



Figure 34: Map Showing Three Tiers of Receptors



Page 46 of 83

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

#### 7.6. Results

The following results were obtained from the air dispersion modelling. As per the Code of Practice, all short-term averages (24-hours or less) were presented as the 99<sup>th</sup> percentile concentration.

In the three-year period, there were 1 096 days. The 99<sup>th</sup> percentile value for the daily average values is thus the 11<sup>th</sup> highest value recorded (1 096 x 0.01 = 10.96).

For hourly concentrations, it was calculated that there were 1 096 x  $24 = 26\,304$  hours in the 2019 – 2021 calendar years. The 99<sup>th</sup> percentile value is thus the  $263^{rd}$  highest value recorded ( $26\,304 \times 0.01 = 263$ ).

For 8-hourly concentrations, there are three eight-hour periods in each day: 1 096 x 3 = 3 288. Thus, the 99<sup>th</sup> percentile value is the  $33^{rd}$  highest value (3 288 x 0.01 = 32.88).

No results inside the plant were assessed, as these are subject to occupational air quality standards and not the NAAQS. Fence line and surrounds, and sensitive receptor results were assessed and are presented in the following sections.

Additionally, the maximum concentrations that were predicted at the fence line and surrounds, and sensitive receptors, were added to the background concentrations for the relevant pollutant from the closest monitoring station with the best data availability to give cumulative concentrations, as per Section 6.2 of the Code of Practice. These cumulative concentrations were assessed against the NAAQS. For short-term averages, this is an extremely conservative way to assess the contribution of a facility to ambient air quality, as it assumes that the maximum concentration that was predicted is experienced every hour, every 8 hours, or every day in the period (depending on the averaging period being assessed). In reality, this would not occur.



| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

#### 7.6.1. PM<sub>10</sub>

| Ave.<br>Period | Parameter        | Max Fence<br>Line and<br>Surrounds | Milnerton<br>Ridge<br>Sensitive<br>Receptor | Bothasig<br>Sensitive<br>Receptor | Flamingo Vlei<br>Sensitive<br>Receptor | Richwood<br>Sensitive<br>Receptor | Dunoon<br>Sensitive<br>Receptor | Phoenix<br>Sensitive<br>Receptor |
|----------------|------------------|------------------------------------|---------------------------------------------|-----------------------------------|----------------------------------------|-----------------------------------|---------------------------------|----------------------------------|
|                | Conc.<br>(µg/m³) | 18.12408                           | 0.26333                                     | 0.11884                           | 0.12428                                | 0.03783                           | 0.03218                         | 0.06409                          |
| Deilu          | Location         | X: 270739.81<br>Y: 6251563.06      | X: 270178.66<br>Y: 6251740.48               | X: 271676.99<br>Y: 6251279.85     | X: 270263.33<br>Y: 6252948.25          | X: 272217.76<br>Y: 6253325.42     | X: 272287.48<br>Y: 6254074.39   | X: 269820.54<br>Y: 6249534.94    |
| Daily          | Elevation        | 11.32                              | 7.61                                        | 24.80                             | 4.83                                   | 30.78                             | 36.35                           | 17.95                            |
|                | Date             | 2019-07-03                         | 2020-05-07                                  | 2021-07-28                        | 2019-06-14                             | 2021-04-21                        | 2019-10-03                      | 2019-08-24                       |
|                | Conc.<br>(µg/m³) | 4.09635                            | 0.04964                                     | 0.02201                           | 0.03093                                | 0.00555                           | 0.00432                         | 0.00865                          |
|                | Location         | X: 270739.81<br>Y: 6251563.06      | X: 270178.66<br>Y: 6251740.48               | X: 271676.99<br>Y: 6251279.85     | X: 270263.33<br>Y: 6252948.25          | X: 272217.76<br>Y: 6253325.42     | X: 272287.48<br>Y: 6254074.39   | X: 269820.54<br>Y: 6249534.94    |
| Annual         | Elevation        | 11.32                              | 7.61                                        | 24.80                             | 4.83                                   | 30.78                             | 36.35                           | 17.95                            |
|                | Date             | -                                  | -                                           | -                                 | -                                      | -                                 | -                               | -                                |

#### Table 18: PM<sub>10</sub> Results

The data presented above indicates that the PM<sub>10</sub> concentrations that are experienced by sensitive receptors are negligible. This is also clearly visible in Figure **35** and Figure 36 below, which show that the main impact of the proposed crematorium is immediately around the site.



Page 48 of 83

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |



Figure 35: Isopleths of **Daily** PM<sub>10</sub> Concentration Around the Proposed Crematorium



Figure 36: Isopleths of Annual PM<sub>10</sub> Concentration Around the Proposed Crematorium



Page 49 of 83

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

The impact of the proposed crematorium on compliance with the PM<sub>10</sub> NAAQS is shown in Table 19 and Table 20 using the Table View monitoring station as a baseline, and Table 21 and Table 22 using the Edgement monitoring station as a baseline.

| Number of exceedances per annum          | 2019 | 2020 | 2021 | Limit |
|------------------------------------------|------|------|------|-------|
| Baseline (Table View Monitoring Station) | 0    | 2    | 0    | 4     |
| Fence Line                               | 1    | 3    | 0    | 4     |
| Milnerton Ridge                          | 0    | 2    | 0    | 4     |
| Bothasig                                 | 0    | 2    | 0    | 4     |
| Flamingo Vlei                            | 0    | 2    | 0    | 4     |
| Richwood                                 | 0    | 2    | 0    | 4     |
| Dunoon                                   | 0    | 2    | 0    | 4     |
| Phoenix                                  | 0    | 2    | 0    | 4     |

### Table 19: Cumulative Daily PM<sub>10</sub> Results (Table View)

#### Table 20: Cumulative Annual PM10 Results (Table View)

| Concentration<br>(µg/m³)                 | 2019 | 2020 | 2021 | Limit |
|------------------------------------------|------|------|------|-------|
| Baseline (Table View Monitoring Station) | 19.8 | 21.0 | 17.6 | 40    |
| Fence Line                               | 23.9 | 25.1 | 21.7 | 40    |
| Milnerton Ridge                          | 19.8 | 21.0 | 17.7 | 40    |
| Bothasig                                 | 19.8 | 21.0 | 17.6 | 40    |
| Flamingo Vlei                            | 19.8 | 21.0 | 17.6 | 40    |
| Richwood                                 | 19.8 | 21.0 | 17.6 | 40    |
| Dunoon                                   | 19.8 | 21.0 | 17.6 | 40    |
| Phoenix                                  | 19.8 | 21.0 | 17.6 | 40    |

These tables show that the addition of the proposed crematorium is predicted to have no impact on the compliance with the NAAQS for  $PM_{10}$  in the area if the Table View station's ambient air quality data is used.



| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

| Number of exceedances per annum        | 2019 | 2020 | 2021 | Limit |
|----------------------------------------|------|------|------|-------|
| Baseline (Edgemead Monitoring Station) | 2    | 1    | 5    | 4     |
| Fence Line                             | 10   | 11   | 17   | 4     |
| Milnerton Ridge                        | 2    | 1    | 5    | 4     |
| Bothasig                               | 2    | 1    | 5    | 4     |
| Flamingo Vlei                          | 2    | 1    | 5    | 4     |
| Richwood                               | 2    | 1    | 5    | 4     |
| Dunoon                                 | 2    | 1    | 5    | 4     |
| Phoenix                                | 2    | 1    | 5    | 4     |

#### Table 21: Cumulative Daily PM<sub>10</sub> Results (Edgemead)

#### Table 22: Cumulative Annual PM10 Results (Edgemead)

| Concentration<br>(µg/m³)               | 2019 | 2020 | 2021 | Limit |
|----------------------------------------|------|------|------|-------|
| Baseline (Edgemead Monitoring Station) | 23.0 | 31.8 | 26.8 | 40    |
| Fence Line                             | 27.1 | 35.9 | 30.9 | 40    |
| Milnerton Ridge                        | 23.0 | 31.9 | 26.8 | 40    |
| Bothasig                               | 23.0 | 31.9 | 26.8 | 40    |
| Flamingo Vlei                          | 23.0 | 31.9 | 26.8 | 40    |
| Richwood                               | 23.0 | 31.8 | 26.8 | 40    |
| Dunoon                                 | 23.0 | 31.8 | 26.8 | 40    |
| Phoenix                                | 23.0 | 31.8 | 26.8 | 40    |

When the Edgemead monitoring station is used as the baseline, the daily average PM<sub>10</sub> concentrations exceed the NAAQS standard more than the allowed four times at the fence line of the facility. This is because the baseline PM<sub>10</sub> concentrations at the Edgemead monitoring station were higher than at the Table View monitoring station. There are no annual NAAQS exceedances predicted. As has been noted, the cumulative daily results very conservatively assume that the maximum daily concentration is experienced every day of the three year period, which would not occur in reality.

Although the engineering specifications of the cremators indicate that the stacks are to be 12 metres high, the AERMOD model was run using various stack heights, up to a maximum of 20 metres. These resulted in lower maximum daily concentrations of PM<sub>10</sub> at the fence line. The optimum height was determined to be 16 metres, which resulted in no NAAQS exceedances, unless these exceedances

Page 51 of 83



| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

existed in the baseline data (i.e. daily  $PM_{10}$  in 2021 using the Edgemead baseline data). These results are shown below.

| Ave. Period | Parameter     | Max Fence Line and<br>Surrounds |
|-------------|---------------|---------------------------------|
|             | Conc. (µg/m³) | 5.8629                          |
| Daily       | Location      | X: 270739.81<br>Y: 6251563.06   |
|             | Elevation     | 11.32                           |
|             | Date          | 2019-07-18                      |

### Table 23: PM<sub>10</sub> Results (16 Metre Stack)

#### Table 24: Cumulative Daily PM10 Results (16 Metre Stack, Edgemead)

| Number of exceedances per annum        | 2019 | 2020 | 2021 | Limit |
|----------------------------------------|------|------|------|-------|
| Baseline (Edgemead Monitoring Station) | 2    | 1    | 5    | 4     |
| Fence Line                             | 4    | 2    | 8    | 4     |



| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

#### 7.6.2. PM<sub>2.5</sub>

| Ave.<br>Period | Parameter        | Max Fence<br>Line and<br>Surrounds | Milnerton<br>Ridge<br>Sensitive<br>Receptor | Bothasig<br>Sensitive<br>Receptor | Flamingo Vlei<br>Sensitive<br>Receptor | Richwood<br>Sensitive<br>Receptor | Dunoon<br>Sensitive<br>Receptor | Phoenix<br>Sensitive<br>Receptor |
|----------------|------------------|------------------------------------|---------------------------------------------|-----------------------------------|----------------------------------------|-----------------------------------|---------------------------------|----------------------------------|
|                | Conc.<br>(µg/m³) | 18.12408                           | 0.26333                                     | 0.11884                           | 0.12428                                | 0.03783                           | 0.03218                         | 0.06409                          |
| Daily          | Location         | X: 270739.81<br>Y: 6251563.06      | X: 270178.66<br>Y: 6251740.48               | X: 271676.99<br>Y: 6251279.85     | X: 270263.33<br>Y: 6252948.25          | X: 272217.76<br>Y: 6253325.42     | X: 272287.48<br>Y: 6254074.39   | X: 269820.54<br>Y: 6249534.94    |
| Daily          | Elevation        | 11.32                              | 7.61                                        | 24.80                             | 4.83                                   | 30.78                             | 36.35                           | 17.95                            |
|                | Date             | 2019-07-03                         | 2020-05-07                                  | 2021-07-28                        | 2019-06-14                             | 2021-04-21                        | 2019-10-03                      | 2019-08-24                       |
|                | Conc.<br>(µg/m³) | 4.09635                            | 0.04964                                     | 0.02201                           | 0.03093                                | 0.00555                           | 0.00432                         | 0.00865                          |
| Annual         | Location         | X: 270739.81<br>Y: 6251563.06      | X: 270178.66<br>Y: 6251740.48               | X: 271676.99<br>Y: 6251279.85     | X: 270263.33<br>Y: 6252948.25          | X: 272217.76<br>Y: 6253325.42     | X: 272287.48<br>Y: 6254074.39   | X: 269820.54<br>Y: 6249534.94    |
| 7              | Elevation        | 11.32                              | 7.61                                        | 24.80                             | 4.83                                   | 30.78                             | 36.35                           | 17.95                            |
|                | Date             | -                                  | -                                           | -                                 | -                                      | -                                 | -                               | -                                |

#### Table 25: PM<sub>2.5</sub> Results

The results for ambient  $PM_{2.5}$  concentrations are the same as the ambient  $PM_{10}$  concentrations. This is because the EMEP/EEA emissions factors indicate that the fraction of  $PM_{10}$  and  $PM_{2.5}$  in TSP are the same. However, because the baseline concentrations for  $PM_{2.5}$  are different to the baseline  $PM_{10}$  concentrations, the cumulative results differ.



| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |



Figure 37: Isopleths of Daily PM<sub>2.5</sub> Concentration Around the Proposed Crematorium



Figure 38: Isopleths of Annual PM<sub>2.5</sub> Concentration Around the Proposed Crematorium



Page 54 of 83

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

| Number of exceedances per annum          | 2019 | 2020 | 2021 | Limit |
|------------------------------------------|------|------|------|-------|
| Baseline (Table View Monitoring Station) | 1    | 1    | 0    | 4     |
| Fence Line                               | 4    | 3    | 4    | 4     |
| Milnerton Ridge                          | 1    | 1    | 0    | 4     |
| Bothasig                                 | 1    | 1    | 0    | 4     |
| Flamingo Vlei                            | 1    | 1    | 0    | 4     |
| Richwood                                 | 1    | 1    | 0    | 4     |
| Dunoon                                   | 1    | 1    | 0    | 4     |
| Phoenix                                  | 1    | 1    | 0    | 4     |

#### Table 27: Cumulative Annual PM<sub>2.5</sub> Results

| Concentration<br>(µg/m³)                 | 2019 | 2020 | 2021 | Limit |
|------------------------------------------|------|------|------|-------|
| Baseline (Table View Monitoring Station) | 7.9  | 8.6  | 7.3  | 20    |
| Fence Line                               | 12.0 | 12.7 | 11.4 | 20    |
| Milnerton Ridge                          | 7.9  | 8.6  | 7.4  | 20    |
| Bothasig                                 | 7.9  | 8.6  | 7.3  | 20    |
| Flamingo Vlei                            | 7.9  | 8.6  | 7.3  | 20    |
| Richwood                                 | 7.9  | 8.6  | 7.3  | 20    |
| Dunoon                                   | 7.9  | 8.6  | 7.3  | 20    |
| Phoenix                                  | 7.9  | 8.6  | 7.3  | 20    |

Continued compliance with the  $PM_{2.5}$  NAAQS is predicted after the addition of the proposed crematorium.



| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

#### 7.6.3. Carbon Monoxide

| Ave.<br>Period | Parameter        | Max Fence<br>Line and<br>Surrounds | Milnerton<br>Ridge<br>Sensitive<br>Receptor | Bothasig<br>Sensitive<br>Receptor | Flamingo Vlei<br>Sensitive<br>Receptor | Richwood<br>Sensitive<br>Receptor | Dunoon<br>Sensitive<br>Receptor | Phoenix<br>Sensitive<br>Receptor |
|----------------|------------------|------------------------------------|---------------------------------------------|-----------------------------------|----------------------------------------|-----------------------------------|---------------------------------|----------------------------------|
|                | Conc.<br>(ppm)   | 0.05436                            | 0.00117                                     | 0.00064                           | 0.00054                                | 0.00018                           | 0.00015                         | 0.00033                          |
|                | Conc.<br>(µg/m³) | 62.25430                           | 1.34388                                     | 0.72931                           | 0.61452                                | 0.20896                           | 0.16948                         | 0.37716                          |
| Hourly         | Location         | X: 270697.50<br>Y: 6251558.43      | X: 270178.66<br>Y: 6251740.48               | X: 271676.99<br>Y: 6251279.85     | X: 270263.33<br>Y: 6252948.25          | X: 272217.76<br>Y: 6253325.42     | X: 272287.48<br>Y: 6254074.39   | X: 269820.54<br>Y: 6249534.94    |
|                | Elevation        | 10.00                              | 7.61                                        | 24.80                             | 4.83                                   | 30.78                             | 36.35                           | 17.95                            |
|                | Date, Hour       | 2021-11-26,<br>18:00               | 2020-05-16,<br>02:00                        | 2019-06-17,<br>18:00              | 2020-09-02,<br>04:00                   | 2021-12-10,<br>21:00              | 2019-03-07,<br>01:00            | 2021-07-30,<br>01:00             |
|                | Conc.<br>(ppm)   | 0.04082                            | 0.00073                                     | 0.00040                           | 0.00037                                | 0.00012                           | 0.00010                         | 0.00024                          |
|                | Conc.<br>(µg/m³) | 46.75070                           | 0.83173                                     | 0.46369                           | 0.42499                                | 0.13730                           | 0.11403                         | 0.27428                          |
| 8-<br>Hourly   | Location         | X: 270739.81<br>Y: 6251563.06      | X: 270178.66<br>Y: 6251740.48               | X: 271676.99<br>Y: 6251279.85     | X: 270263.33<br>Y: 6252948.25          | X: 272217.76<br>Y: 6253325.42     | X: 272287.48<br>Y: 6254074.39   | X: 269820.54<br>Y: 6249534.94    |
|                | Elevation        | 11.32                              | 7.61                                        | 24.80                             | 4.83                                   | 30.78                             | 36.35                           | 17.95                            |
|                | Date             | 2020-06-21,<br>16:00               | 2020-08-08,<br>08:00                        | 2019-10-07,<br>24:00              | 2021-04-15,<br>08:00                   | 2021-12-29,<br>08:00              | 2020-10-16,<br>24:00            | 2019-04-29,<br>08:00             |

#### Table 28: CO Results



| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

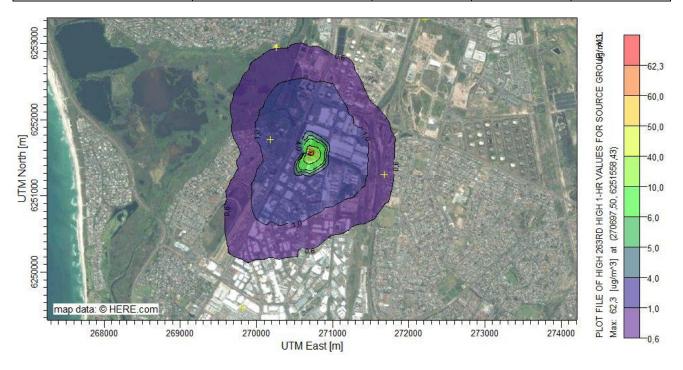



Figure 39: Isopleths of Hourly CO Concentration Around the Proposed Crematorium

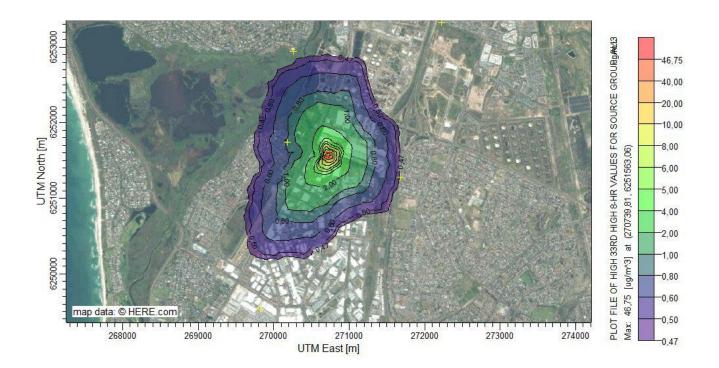



Figure 40: Isopleths of 8-Hourly CO Concentration Around the Proposed Crematorium



Page 57 of 83

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

| Number of exceedances per annum        | 2019 | 2020 | 2021 | Limit |
|----------------------------------------|------|------|------|-------|
| Baseline (Maitland Monitoring Station) | 0    | 0    | 0    | 88    |
| Fence Line                             | 0    | 0    | 0    | 88    |
| Milnerton Ridge                        | 0    | 0    | 0    | 88    |
| Bothasig                               | 0    | 0    | 0    | 88    |
| Flamingo Vlei                          | 0    | 0    | 0    | 88    |
| Richwood                               | 0    | 0    | 0    | 88    |
| Dunoon                                 | 0    | 0    | 0    | 88    |
| Phoenix                                | 0    | 0    | 0    | 88    |

### Table 29: Cumulative Hourly CO Results

### Table 30: Cumulative 8-Hourly CO Results

| Number of exceedances per annum        | 2019 | 2020 | 2021 | Limit |
|----------------------------------------|------|------|------|-------|
| Baseline (Maitland Monitoring Station) | 0    | 0    | 0    | 11    |
| Fence Line                             | 0    | 0    | 0    | 11    |
| Milnerton Ridge                        | 0    | 0    | 0    | 11    |
| Bothasig                               | 0    | 0    | 0    | 11    |
| Flamingo Vlei                          | 0    | 0    | 0    | 11    |
| Richwood                               | 0    | 0    | 0    | 11    |
| Dunoon                                 | 0    | 0    | 0    | 11    |
| Phoenix                                | 0    | 0    | 0    | 11    |

Continued compliance with the CO NAAQS is predicted after the addition of the proposed crematorium.



| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

### 7.6.4. NO<sub>2</sub>

NO<sub>x</sub> is comprised of two chemicals: nitric oxide (NO) and nitrogen dioxide (NO<sub>2</sub>). NO<sub>x</sub> that is released from combustion installations is almost completely comprised of NO, with minimal NO<sub>2</sub> present. However, once released into the atmosphere, NO rapidly reacts with ozone to form NO<sub>2</sub>. Dispersion models do not have sufficiently detailed descriptions of atmospheric chemistry to accurately account for NO's conversion to NO<sub>2</sub>, and thus one of two assumptions must be made:

- 1. Total conversion method: It is assumed that all of the NO<sub>x</sub> that is released from a point source converts into NO<sub>2</sub>. If the maximum NO<sub>2</sub> concentrations are less than the NAAQS, then no further adjustments need to be made. If the NO<sub>2</sub> concentrations exceed the NAAQS, the ambient ratio method (ARM) should be used.
- 2. Ambient ratio method (ARM): It is assumed that the ratio of NO<sub>2</sub> to NO<sub>x</sub> is  $0.8.^{29}$

As per the Code of Practice, the total conversion method was used first, and compliance with the NAAQS was assessed.

| Ave.<br>Period | Parameter        | Max Fence<br>Line and<br>Surrounds | Milnerton<br>Ridge<br>Sensitive<br>Receptor | Bothasig<br>Sensitive<br>Receptor | Flamingo Vlei<br>Sensitive<br>Receptor | Richwood<br>Sensitive<br>Receptor | Dunoon<br>Sensitive<br>Receptor | Phoenix<br>Sensitive<br>Receptor |
|----------------|------------------|------------------------------------|---------------------------------------------|-----------------------------------|----------------------------------------|-----------------------------------|---------------------------------|----------------------------------|
|                | Conc.<br>(ppb)   | 193.37076                          | 4.76203                                     | 2.58430                           | 2.17753                                | 0.74043                           | 0.60056                         | 1.33647                          |
|                | Conc.<br>(µg/m³) | 363.80592                          | 8.95923                                     | 4.86207                           | 4.09679                                | 1.39304                           | 1.12989                         | 2.51442                          |
| Hourly         | Location         | X: 270688.13<br>Y: 6251555.34      | X: 270178.66<br>Y: 6251740.48               | X: 271676.99<br>Y: 6251279.85     | X: 270263.33<br>Y: 6252948.25          | X: 272217.76<br>Y: 6253325.42     | X: 272287.48<br>Y: 6254074.39   | X: 269820.54<br>Y: 6249534.94    |
|                | Elevation        | 10.00                              | 7.61                                        | 24.80                             | 4.83                                   | 30.78                             | 36.35                           | 17.95                            |
|                | Date, Hour       | 2020-12-07,<br>07:00               | 2020-05-16,<br>02:00                        | 2020-06-17,<br>18:00              | 2020-09-02,<br>04:00                   | 2021-12-10,<br>21:00              | 2019-03-07,<br>01:00            | 2021-07-30,<br>01:00             |
|                | Conc.<br>(ppb)   | 30.24871                           | 0.36655                                     | 0.16254                           | 0.22838                                | 0.04101                           | 0.03193                         | 0.06384                          |
|                | Conc.<br>(µg/m³) | 56.90963                           | 0.68962                                     | 0.3058                            | 0.42967                                | 0.07716                           | 0.06007                         | 0.12011                          |
| Annual         | Location         | X: 270739.81<br>Y: 6251563.06      | X: 270178.66<br>Y: 6251740.48               | X: 271676.99<br>Y: 6251279.85     | X: 270263.33<br>Y: 6252948.25          | X: 272217.76<br>Y: 6253325.42     | X: 272287.48<br>Y: 6254074.39   | X: 269820.54<br>Y: 6249534.94    |
|                | Elevation        | 11.32                              | 7.61                                        | 24.80                             | 4.83                                   | 30.78                             | 36.35                           | 17.95                            |
|                | Date             | -                                  | -                                           | -                                 | -                                      | -                                 | -                               | -                                |

Table 31: NO<sub>2</sub> Results (Total Conversion Method)



<sup>&</sup>lt;sup>29</sup> Section 6.6.1. of the Code of Practice.

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

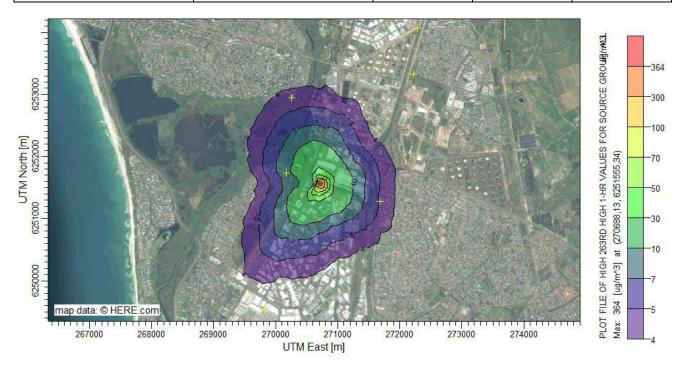



Figure 41: Isopleths of Hourly NO<sub>2</sub> Concentration Around the Proposed Crematorium

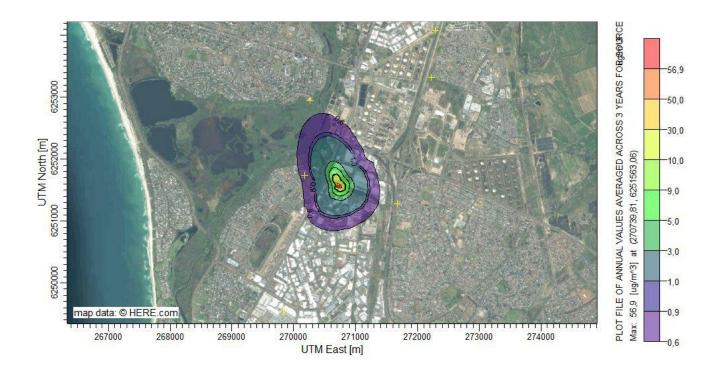



Figure 42: Isopleths of Annual NO2 Concentration Around the Proposed Crematorium



Page 60 of 83

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

| Table 32: Cumulative Hourly NO <sub>2</sub> Results (Total Conversion, Table View) |
|------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------|

| Number of exceedances per annum          | 2019 | 2020     | 2021 | Limit |
|------------------------------------------|------|----------|------|-------|
| Baseline (Table View Monitoring Station) | 3    | 0        | 0    | 88    |
| Fence Line                               |      | Exceeded |      | 88    |
| Milnerton Ridge                          | 3    | 0        | 0    | 88    |
| Bothasig                                 | 3    | 0        | 0    | 88    |
| Flamingo Vlei                            | 3    | 0        | 0    | 88    |
| Richwood                                 | 3    | 0        | 0    | 88    |
| Dunoon                                   | 3    | 0        | 0    | 88    |
| Phoenix                                  | 3    | 0        | 0    | 88    |

## Table 33: Cumulative Annual NO2 Results (Total Conversion, Table View)

| Concentration<br>(µg/m³)                 | 2019 | 2020 | 2021 | Limit |
|------------------------------------------|------|------|------|-------|
| Baseline (Table View Monitoring Station) | 12.9 | 12.1 | 5.7  | 21    |
| Fence Line                               | 43.1 | 42.4 | 35.9 | 21    |
| Milnerton Ridge                          | 13.3 | 12.5 | 6.1  | 21    |
| Bothasig                                 | 13.0 | 12.3 | 5.9  | 21    |
| Flamingo Vlei                            | 13.1 | 12.4 | 5.9  | 21    |
| Richwood                                 | 12.9 | 12.2 | 5.7  | 21    |
| Dunoon                                   | 12.9 | 12.2 | 5.7  | 21    |
| Phoenix                                  | 12.9 | 12.2 | 5.8  | 21    |



Page 61 of 83

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

| Number of exceedances per annum        | 2019 | 2020     | 2021 | Limit |
|----------------------------------------|------|----------|------|-------|
| Baseline (Edgemead Monitoring Station) | 0    | 0        | 0    | 88    |
| Fence Line                             |      | Exceeded |      | 88    |
| Milnerton Ridge                        | 0    | 0        | 1    | 88    |
| Bothasig                               | 0    | 0        | 0    | 88    |
| Flamingo Vlei                          | 0    | 0        | 0    | 88    |
| Richwood                               | 0    | 0        | 0    | 88    |
| Dunoon                                 | 0    | 0        | 0    | 88    |
| Phoenix                                | 0    | 0        | 0    | 88    |

#### Table 34: Cumulative Hourly NO2 Results (Total Conversion, Edgemead)

#### Table 35: Cumulative Annual NO2 Results (Total Conversion, Edgemead)

| Concentration<br>(μg/m³)               | 2019 | 2020 | 2021 | Limit |
|----------------------------------------|------|------|------|-------|
| Baseline (Edgemead Monitoring Station) | 9.5  | 8.4  | 8.7  | 21    |
| Fence Line                             | 39.8 | 38.6 | 38.9 | 21    |
| Milnerton Ridge                        | 9.9  | 8.7  | 9.1  | 21    |
| Bothasig                               | 9.7  | 8.5  | 8.9  | 21    |
| Flamingo Vlei                          | 9.8  | 8.6  | 8.9  | 21    |
| Richwood                               | 9.6  | 8.4  | 8.7  | 21    |
| Dunoon                                 | 9.6  | 8.4  | 8.7  | 21    |
| Phoenix                                | 9.6  | 8.4  | 8.8  | 21    |

Considering that the hourly and annual NAAQS standards of 106 ppb and 21 ppb respectively were exceeded, the model was run again using the ARM method, and the maximum concentrations at the fence line are shown in the following table. It must be noted that the NO<sub>2</sub> concentration rapidly declines and once it reaches sensitive receptors remains well below the NAAQS. Thus, the ARM method was not used to model the NO<sub>2</sub> concentration at the sensitive receptors.



| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

| Ave. Period | Parameter     | Max Fence Line and<br>Surrounds |
|-------------|---------------|---------------------------------|
|             | Conc. (ppb)   | 154.69661                       |
|             | Conc. (µg/m³) | 291.04474                       |
| Hourly      | Location      | X: 270688.13<br>Y: 6251555.34   |
|             | Elevation     | 10.00                           |
|             | Date, Hour    | 2020-12-07, 07:00               |
|             | Conc. (ppb)   | 24.19897                        |
|             | Conc. (µg/m³) | 45.52771                        |
| Annual      | Location      | X: 270739.81<br>Y: 6251563.06   |
|             | Elevation     | 11.32                           |
|             | Date          | -                               |

#### Table 36: NO<sub>2</sub> Results (ARM)

Again, the maximum hourly and annual fence line concentrations are predicted to exceed the NAAQS standards of 106 ppb and 21 ppb respectively.

Although the engineering specifications of the cremators indicate that the stacks are to be 12 metres high, the AERMOD model was run using various stack heights, up to a maximum of 20 metres. These resulted in lower maximum hourly concentrations of NO<sub>2</sub> at the fence line. The optimum height was determined to be 16 metres, which resulted in no NAAQS exceedances. These results are shown below.



Page 63 of 83

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

| Ave. Period | Parameter     | Max Fence Line and<br>Surrounds |
|-------------|---------------|---------------------------------|
|             | Conc. (ppb)   | 55.20215                        |
|             | Conc. (µg/m³) | 103.85681                       |
| Hourly      | Location      | X: 270688.13<br>Y: 6251555.34   |
|             | Elevation     | 10.00                           |
|             | Date, Hour    | 2021-07-27, 04:00               |
|             | Conc. (ppb)   | 6.14729                         |
|             | Conc. (µg/m³) | 11.56546                        |
| Annual      | Location      | X: 270697.50<br>Y: 6251658.43   |
|             | Elevation     | 11.46                           |
|             | Date          | -                               |

#### Table 37: NO<sub>2</sub> Results (Using ARM and 16 Metre Stack)

### Table 38: Cumulative Hourly NO2 Results (Table View, ARM and 16 Metre Stack)

| Number of exceedances per annum          | 2019 | 2020 | 2021 | Limit |
|------------------------------------------|------|------|------|-------|
| Baseline (Table View Monitoring Station) | 3    | 0    | 0    | 88    |
| Fence Line                               | 79   | 43   | 0    | 88    |

#### Table 39: Cumulative Annual NO2 Results (Table View, ARM and 16 Metre Stack)

| Concentration<br>(µg/m³)                 | 2019 | 2020 | 2021 | Limit |
|------------------------------------------|------|------|------|-------|
| Baseline (Table View Monitoring Station) | 12.9 | 12.1 | 5.7  | 21    |
| Fence Line                               | 19.0 | 18.3 | 11.8 | 21    |



| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

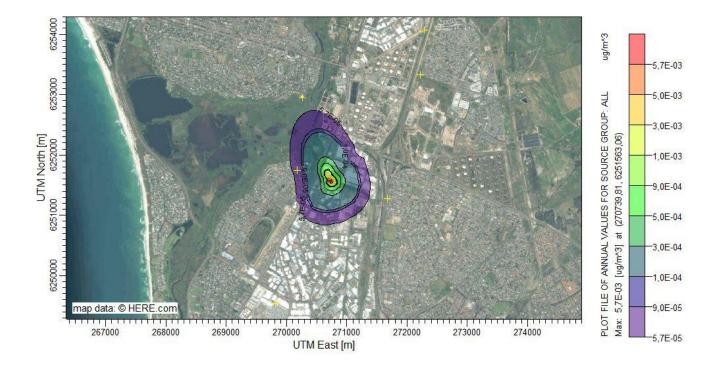
#### Table 40: Cumulative Hourly NO2 Results (Edgemead, ARM and 16 Metre Stack)

| Number of exceedances per annum        | 2019 | 2020 | 2021 | Limit |
|----------------------------------------|------|------|------|-------|
| Baseline (Edgemead Monitoring Station) | 0    | 0    | 0    | 88    |
| Fence Line                             | 16   | 5    | 25   | 88    |

#### Table 41: Cumulative Annual NO2 Results (Edgemead, ARM and 16 Metre Stack)

| Concentration<br>(µg/m³)               | 2019 | 2020 | 2021 | Limit |
|----------------------------------------|------|------|------|-------|
| Baseline (Edgemead Monitoring Station) | 9.5  | 8.4  | 8.7  | 21    |
| Fence Line                             | 15.7 | 14.5 | 14.8 | 21    |




Page 65 of 83

| Client Report                   |                           | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

### 7.6.5. Mercury

| Ave.<br>Period | Parameter        | Max Fence<br>Line and<br>Surrounds | Milnerton<br>Ridge<br>Sensitive<br>Receptor | Bothasig<br>Sensitive<br>Receptor | Flamingo Vlei<br>Sensitive<br>Receptor | Richwood<br>Sensitive<br>Receptor | Dunoon<br>Sensitive<br>Receptor | Phoenix<br>Sensitive<br>Receptor |
|----------------|------------------|------------------------------------|---------------------------------------------|-----------------------------------|----------------------------------------|-----------------------------------|---------------------------------|----------------------------------|
|                | Conc.<br>(µg/m³) | 0.00573                            | 0.00007                                     | 0.00003                           | 0.00004                                | 0.00001                           | 0.00001                         | 0.00001                          |
| Annual         | Location         | X: 270739.81<br>Y: 6251563.06      | X: 270178.66<br>Y: 6251740.48               | X: 271676.99<br>Y: 6251279.85     | X: 270263.33<br>Y: 6252948.25          | X: 272217.76<br>Y: 6253325.42     | X: 272287.48<br>Y: 6254074.39   | X: 269820.54<br>Y: 6249534.94    |
| , in local     | Elevation        | 11.32                              | 7.61                                        | 24.80                             | 4.83                                   | 30.78                             | 36.35                           | 17.95                            |
|                | Date             | -                                  | -                                           | -                                 | -                                      | -                                 | -                               | -                                |









Page 66 of 83

| Client Report                   |                           | Version | Report No.    | Date       |  |
|---------------------------------|---------------------------|---------|---------------|------------|--|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |  |

| Receptor        | Annual Average International<br>Guideline | Concentration (µg/m³) |
|-----------------|-------------------------------------------|-----------------------|
| Baseline        |                                           | 0.0011                |
| Fence Line      |                                           | 0.0068                |
| Milnerton Ridge |                                           | 0.0012                |
| Bothasig        |                                           | 0.0011                |
| Flamingo Vlei   | l μg/m³                                   | 0.0011                |
| Richwood        |                                           | 0.0011                |
| Dunoon          |                                           | 0.0011                |
| Phoenix         |                                           | 0.0011                |

Table 43: Mercury Cumulative Ambient Air Quality (Cape Point)

Very low concentrations of mercury are predicted at the fence line and sensitive receptors. These are well below the international guideline that was used in this report.



| Client Report                   |                           | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

#### 7.6.6.Benzene

| Ave.<br>Period | Parameter        | Max Fence<br>Line and<br>Surrounds | Milnerton<br>Ridge<br>Sensitive<br>Receptor | Bothasig<br>Sensitive<br>Receptor | Flamingo Vlei<br>Sensitive<br>Receptor | Richwood<br>Sensitive<br>Receptor | Dunoon<br>Sensitive<br>Receptor | Phoenix<br>Sensitive<br>Receptor |
|----------------|------------------|------------------------------------|---------------------------------------------|-----------------------------------|----------------------------------------|-----------------------------------|---------------------------------|----------------------------------|
|                | Conc.<br>(ppb)   | 0.43171                            | 0.00523                                     | 0.00232                           | 0.00326                                | 0.00059                           | 0.00046                         | 0.00091                          |
|                | Conc.<br>(µg/m³) | 1.37920                            | 0.01671                                     | 0.00741                           | 0.01041                                | 0.00187                           | 0.00146                         | 0.00291                          |
| Annual         | Location         | X: 270739.81<br>Y: 6251563.06      | X: 270178.66<br>Y: 6251740.48               | X: 271676.99<br>Y: 6251279.85     | X: 270263.33<br>Y: 6252948.25          | X: 272217.76<br>Y: 6253325.42     | X: 272287.48<br>Y: 6254074.39   | X: 269820.54<br>Y: 6249534.94    |
|                | Elevation        | 11.32                              | 7.61                                        | 24.80                             | 4.83                                   | 30.78                             | 36.35                           | 17.95                            |
|                | Date             | -                                  | -                                           | -                                 | -                                      | -                                 | -                               | -                                |

#### Table 44: Benzene Results

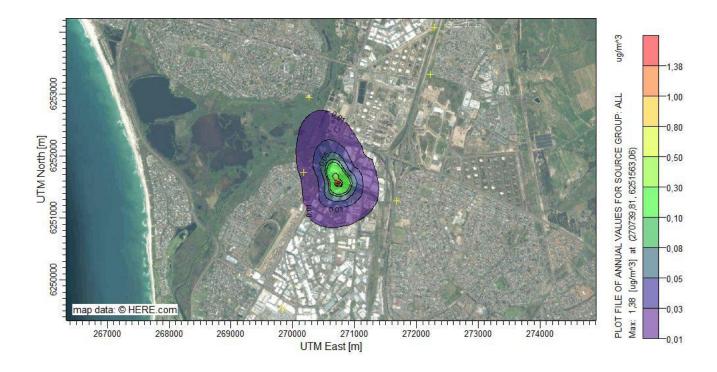



Figure 44: Isopleths of Annual Benzene Concentration Around the Proposed Crematorium



Page 68 of 83

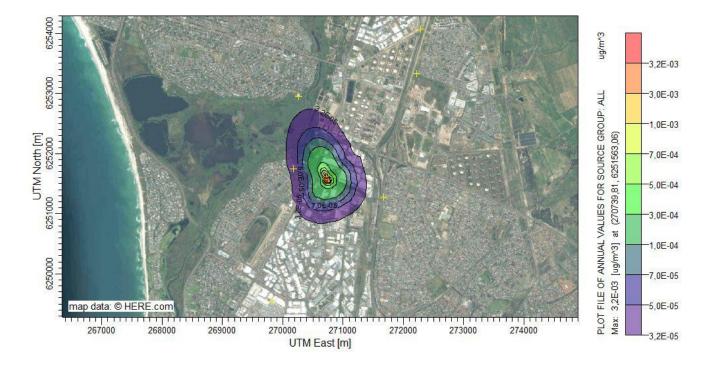
| Client Report                   |                           | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

| Concentration<br>(ppb) | 2019 | 2020 | 2021 | Limit |
|------------------------|------|------|------|-------|
| Baseline (Potsdam)     | 2.0  | 0.9  | -    | 1.6   |
| Fence Line             | 2.5  | 1.4  | -    | 1.6   |
| Milnerton Ridge        | 2.0  | 0.9  | -    | 1.6   |
| Bothasig               | 2.0  | 0.9  | -    | 1.6   |
| Flamingo Vlei          | 2.0  | 0.9  | -    | 1.6   |
| Richwood               | 2.0  | 0.9  | -    | 1.6   |
| Dunoon                 | 2.0  | 0.9  | -    | 1.6   |
| Phoenix                | 2.0  | 0.9  | -    | 1.6   |

Table 45: Cumulative Annual Benzene Results

The annual baseline benzene concentration exceeded the NAAQS in 2019. Thus, after the predicted annual benzene concentration as a result of the proposed crematorium was added, the exceedance remained. In 2020, the annual baseline benzene concentration was below the NAAQS, and this remained the case when the annual benzene concentration as a result of the proposed crematorium was added. Thus, the proposed crematorium is not predicted to affect compliance with the benzene standard. Again, it must be remembered that it was very conservatively assumed that all VOCs that are released from the cremators are benzene. This would not be the case in reality.




Page 69 of 83

| Client Report                   |                           | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

## 7.6.1.Lead

| Ave.<br>Period | Parameter        | Max Fence<br>Line and<br>Surrounds | Milnerton<br>Ridge<br>Sensitive<br>Receptor | Bothasig<br>Sensitive<br>Receptor | Flamingo Vlei<br>Sensitive<br>Receptor | Richwood<br>Sensitive<br>Receptor | Dunoon<br>Sensitive<br>Receptor | Phoenix<br>Sensitive<br>Receptor |
|----------------|------------------|------------------------------------|---------------------------------------------|-----------------------------------|----------------------------------------|-----------------------------------|---------------------------------|----------------------------------|
|                | Conc.<br>(µg/m3) | 0.003178                           | 0.00004                                     | 0.00002                           | 0.00002                                | 0                                 | 0                               | 0.00001                          |
| Annual         | Location         | X: 270739.81<br>Y: 6251563.06      | X: 270178.66<br>Y: 6251740.48               | X: 271676.99<br>Y: 6251279.85     | X: 270263.33<br>Y: 6252948.25          | X: 272217.76<br>Y: 6253325.42     | X: 272287.48<br>Y: 6254074.39   | X: 269820.54<br>Y: 6249534.94    |
| , in local     | Elevation        | 11.32                              | 7.61                                        | 24.80                             | 4.83                                   | 30.78                             | 36.35                           | 17.95                            |
|                | Date             | -                                  | -                                           | -                                 | -                                      | -                                 | -                               | -                                |





### Figure 45: Isopleths of Annual Lead Concentration Around the Proposed Crematorium

The ambient annual lead concentration as a result of the proposed crematorium's operations is predicted to remain well below the NAAQS of  $0.5 \,\mu\text{g/m}^3$  at the fence line and at all sensitive receptors. There is no baseline ambient air quality data available.



Page 70 of 83

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

#### 7.7. Air Dispersion Modelling Conclusions

Baseline ambient air quality in the area surrounding the proposed crematorium was collected from ambient air quality monitoring stations. Baseline data from the monitoring stations closest to the site, and with the highest level of data availability were chosen to be used further in the study.

An emissions inventory was compiled for the pollutants identified by G.N. 893 of 2013 to be of concern from crematoria: PM, CO, NO<sub>x</sub>, and mercury. Level 2 air dispersion modelling was conducted for these pollutants using the AERMOD View programme.

The ambient pollutant concentrations that were predicted by the AERMOD model were added to baseline air quality data to obtain cumulative predicted concentrations. These concentrations were compared to the NAAQS standards and international guidelines where no NAAQS are available.

Ambient PM<sub>10</sub> (using the Table View baseline data), PM<sub>2.5</sub>, CO, mercury, and lead concentrations around the fence line of the site are predicted to remain in compliance with the NAAQS standards (and the international guideline for mercury) should the proposed crematorium be commissioned.

While the annual cumulative benzene concentration would have exceeded the NAAQS in 2019, this was also the case in the baseline data before the contribution from the proposed crematorium was considered. Thus, the benzene concentration as a result of the proposed crematorium does not change the overall compliance status.

Maximum ambient hourly NO<sub>2</sub> concentrations at the fence line are predicted to exceed the hourly NAAQS standard. However, the concentration rapidly decreases with distance from the site, and no NAAQS exceedances are predicted in any of the surrounding residential areas. It must also be noted that the cumulative air quality impact of the facility is estimated by assuming that the maximum hourly concentration will be experienced every hour of every day in the three year period, which would not be the case in reality. The ambient annual NO<sub>2</sub> concentration at the fence line is predicted to comply with the annual NAAQS for NO<sub>2</sub>.

When PM<sub>10</sub> data from the Edgemead monitoring station is used as a baseline, the daily PM<sub>10</sub> concentrations are predicted to exceed the NAAQS standard at the facility's fence line. Again, it should be noted that the cumulative air quality impact of the facility is estimated by assuming that the maximum daily concentration will be experienced every day in the three year period, which would not be the case in reality.

Although the engineering specifications of the cremators indicate that the stacks are to be 12 metres high, the AERMOD model was run using stack heights of up to 20 metres. The optimum height was determined to be 16 metres, which resulted in no NAAQS exceedances at the fence line for PM<sub>10</sub> or NO<sub>2</sub>, unless these exceedances existed in the baseline data (i.e. daily PM<sub>10</sub> in 2021 using the Edgemead baseline data). It is recommended that higher stack heights be considered by the proponent in order to minimise the effect of the proposed crematorium on ambient air quality.



Page 71 of 83

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

## 8. Complaints

Not applicable.

## 9. Current or Planned Air Quality Management Interventions

Not applicable.

## 10. Compliance and Enforcement History

None.

Yellow Tree would like to thank Sharples Environmental Services and Platinum Pride for the opportunity to be of service. Yellow Tree's passion is to assist clients in quantifying their emissions accurately, to advise clients about engineering solutions to air emissions problems, and to help clients in making improvements in keeping with their environmental policies while constraining the costs of such solutions.



Page 72 of 83

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

# 11. Appendix A: Report Details

| Reporting Conducted by: | Yellow Tree<br>Unit D14, Prime Park<br>Mocke Road<br>Diep River<br>7945 |
|-------------------------|-------------------------------------------------------------------------|
| Report Compiled by:     | Caitlin Morris, BSc (Chem Eng), LLM (Env Law)<br>083 566 2552           |
| Report Reviewed by:     | Sean Charteris, BSc (Chem Eng)                                          |
| Report Compiled for:    | Sharples Environmental Services                                         |



Page 73 of 83

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

# 12. Appendix B: Air Dispersion Modelling Study Reporting Requirements<sup>30</sup>

| Chapte | er 1: Facility and modellers' information                                                                                      | Submitted<br>Yes/No | Comments,<br>References |
|--------|--------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------|
|        | Project identification information requirements                                                                                |                     |                         |
|        | Applicant                                                                                                                      | Y                   | 7                       |
|        | Physical address of facility                                                                                                   | Y                   | 8                       |
| 1.1    | Air Emissions License reference number (if applicable)                                                                         | Y                   | 9                       |
|        | Environmental authorization reference number (if applicable)                                                                   | Y                   | NA                      |
|        | Modelling contractor(s), when applicable                                                                                       | Y                   | 81                      |
|        | Project background requirements                                                                                                |                     |                         |
| 1.2    | <ul> <li>Purpose(s) and objectives of the air dispersion modelling under consideration.</li> </ul>                             | Y                   | 6                       |
|        | <ul> <li>General descriptive narrative of the plant processes and proposed new source or modification.</li> </ul>              | Y                   | 10                      |
| 1.3    | Project location requirements                                                                                                  |                     |                         |
|        | Detailed scaled layout plan of proposed project area including the following:                                                  |                     |                         |
|        | UTM coordinates of facility Property lines, including fence                                                                    | Y                   | 15                      |
|        | Property lines, including fence lines                                                                                          | Y                   | 15                      |
|        | Roads and railroads that pass through property line                                                                            | Y                   | 15                      |
| .3.1   | <ul> <li>Location and dimensions of buildings and/or structures (on or off<br/>property) which could cause downwash</li> </ul> | Y                   | 15                      |
|        | ° Location                                                                                                                     |                     |                         |
|        | ° Length                                                                                                                       |                     |                         |
|        | ° Width                                                                                                                        |                     |                         |
|        | ° Height                                                                                                                       |                     |                         |
|        | Indication of shortest distance to property line from significant sources                                                      | Y                   | 15                      |
|        | Area map(s) that include the following:                                                                                        |                     |                         |
|        | <ul> <li>Map of adjacent area (10 km radius from proposed source) indicating<br/>the following</li> </ul>                      | Y                   | 16                      |
|        | ° Latitude/Longitude on horizontal and vertical axis                                                                           |                     |                         |
|        | <ul> <li>Nearby known pollution sources</li> </ul>                                                                             |                     |                         |
|        | ° Schools and hospitals within 10km of facility boundary                                                                       |                     |                         |
|        | ° Topographic features                                                                                                         |                     |                         |
| .3.2   | ° Any proposed off-site or on-site meteorological monitoring stations                                                          |                     |                         |
|        | ° Roads and railroads                                                                                                          |                     |                         |
|        | Regional map that includes the following                                                                                       | Y                   | 20                      |
|        | ° UTM coordinates                                                                                                              |                     |                         |
|        | ° Modelled Facility                                                                                                            |                     |                         |
|        | ° Topography features within 50 km                                                                                             |                     |                         |
|        | ° Known pollution sources within 50 km                                                                                         |                     |                         |

<sup>30</sup> Section 7.2.2 Code of Practice



|         | Client                                                                                                        | Report                               | Version    | Report No.          | Date                    |
|---------|---------------------------------------------------------------------------------------------------------------|--------------------------------------|------------|---------------------|-------------------------|
| Sharple | es Environmental Services                                                                                     | Atmospheric Impact Report            | 05         | YTC1547SES/05       | 2022-09-09              |
|         | ° Any proposed off-site r                                                                                     | neteorological monitoring stations   |            |                     |                         |
|         | Geophysical data                                                                                              |                                      |            |                     |                         |
| 1.4     | • Discuss land use cha<br>dispersion coefficients (u                                                          | racterization procedures utilized to | determine  | Y                   | 21                      |
|         |                                                                                                               | a data (DEM) and its resolution      |            | Y                   | 21                      |
|         | Elevation data (DEM) and                                                                                      | I resolution                         |            |                     |                         |
| 1.5     | Discuss DEM data utilized                                                                                     |                                      | Y          | 21                  |                         |
|         | Chapter                                                                                                       | 2. Emissions characterisation        |            | Submitted<br>Yes/No | Comments,<br>References |
|         | Emissions characteristic                                                                                      | s                                    |            | 163/140             | Kelelelices             |
|         | Include fugitive and                                                                                          | d secondary emissions when applic    | cable      | Y                   | 22                      |
| 2.1     | Emission unit descriptions and capacities (including proposed emission                                        |                                      |            | Y                   | 22                      |
|         | <ul> <li>controls)</li> <li>New structures or modifications to existing structures as a results of</li> </ul> |                                      |            | NA                  |                         |
|         | project<br>Operating scenarios for                                                                            | emission units                       |            |                     |                         |
|         | _                                                                                                             | ns simulated in the modelling study  | /          | Y                   | 22                      |
| 2.2     | ° Normal                                                                                                      |                                      |            |                     |                         |
|         | ° Start-up                                                                                                    |                                      |            |                     |                         |
|         | ° Standby                                                                                                     |                                      |            |                     |                         |
|         | ° Shutdown                                                                                                    |                                      |            |                     |                         |
|         | Proposed emissions and source parameter table(s)                                                              |                                      |            |                     |                         |
|         | List all identifiable e                                                                                       | missions                             |            | Y                   | 45                      |
|         | Include parameter table(s) for each operating scenario of                                                     |                                      |            |                     |                         |
|         | each emission unit, which may include, but not be limited to the following:                                   |                                      |            | Y                   | 45                      |
| 0.0     | ° Operating scenario(s)                                                                                       |                                      |            |                     |                         |
| 2.3     | ° Source location (UTM Coordinates)                                                                           |                                      |            |                     |                         |
|         | ° Point source paramet                                                                                        | ers                                  |            |                     |                         |
|         | ° Area source paramet                                                                                         | ers                                  |            |                     |                         |
|         | <ul> <li>Volume source paran</li> </ul>                                                                       |                                      |            |                     |                         |
|         | <ul> <li>Include proposed em<br/>identifiable emissions</li> </ul>                                            | issions (and supporting calculation  | s) for all |                     |                         |
|         | Chap                                                                                                          | ter 3: Meteorological data           |            | Submitted<br>Yes/No | Comments,<br>References |
|         | Surface data discussion                                                                                       | s must include:                      |            | NA                  |                         |
|         | • Off-site                                                                                                    |                                      |            |                     |                         |
|         | ° Source of data                                                                                              |                                      |            |                     |                         |
| 3.1     | ° Description of station                                                                                      | (location, tower height, etc.)       |            |                     |                         |
|         | ° Period of record                                                                                            |                                      |            |                     |                         |
|         | ° Demonstrate tempor                                                                                          | al and spatial representativeness    |            |                     |                         |
|         | <ul> <li>Seasonal wind-rose(s)</li> </ul>                                                                     |                                      |            |                     |                         |



|          | Client                                                                                                                                                                                                                                                                                                                        | Report                                                                                                                                                                                                                                                                   | Version         | Report No.          | Date                  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|-----------------------|
| Sharples | s Environmental Services                                                                                                                                                                                                                                                                                                      | Atmospheric Impact Report                                                                                                                                                                                                                                                | 05              | YTC1547SES/05       | 2022-09-09            |
|          | <ul> <li>3-year of representati</li> <li>Evaluate if off-site dat</li> <li>Program and version if</li> <li>Method used to replate</li> <li>Method used to hance</li> <li>On-site</li> <li>Description of station</li> <li>Period of record</li> <li>Demonstrate spatial replate</li> <li>Minimum 1-year of replate</li> </ul> | ve off-site data<br>a complies with regulatory Code of<br>used to process data<br>ce missing hours<br>lle calm periods<br>(location, tower height, etc.)<br>epresentativeness<br>presentative on-site data<br>a complies with regulatory Code of<br>used to process data | f Practice      | Y                   | 26                    |
| 3.2      | <ul> <li>Method used to hand</li> <li>Discuss upper air data u</li> <li>Discuss upper air data</li> <li>Explain why it is mo</li> </ul>                                                                                                                                                                                       | <b>tilised</b><br>ata utilised from the most represen                                                                                                                                                                                                                    | tative station. | Y<br>Y<br>Submitted | 26<br>26<br>Comments, |
|          | Chapter 4: Ambie                                                                                                                                                                                                                                                                                                              | nt impact analysis and ambient le                                                                                                                                                                                                                                        | vels            | Yes/No              | References            |
| 4.1      | <ul><li>Standards Levels</li><li>National Ambient Air (</li></ul>                                                                                                                                                                                                                                                             | Quality Standards                                                                                                                                                                                                                                                        |                 | Y                   | 27                    |
| 4.2      |                                                                                                                                                                                                                                                                                                                               | alues used including supporting d                                                                                                                                                                                                                                        | ocumentation    | Y<br>Submitted      | 29<br>Comments,       |
|          |                                                                                                                                                                                                                                                                                                                               | er 5: Modelling Procedures                                                                                                                                                                                                                                               |                 | Yes/No              | References            |
| 5.1      | <ul> <li>Assessment level pr</li> <li>Dispersion model us</li> </ul>                                                                                                                                                                                                                                                          | and input programs                                                                                                                                                                                                                                                       |                 | Y<br>Y<br>Y<br>Y    | 45<br>45<br>45<br>45  |
|          | Specify modelled emiss                                                                                                                                                                                                                                                                                                        | ions                                                                                                                                                                                                                                                                     |                 |                     |                       |
| 5.2      |                                                                                                                                                                                                                                                                                                                               | sions that were modelled<br>1 factor utilized for converting NOx                                                                                                                                                                                                         | to NO2          | Y<br>Y<br>Y         | 45<br>45<br>59        |
|          | Specify setting utilised w                                                                                                                                                                                                                                                                                                    | vithin the model(s), which may inc                                                                                                                                                                                                                                       | ude:            |                     |                       |
| 5.3      |                                                                                                                                                                                                                                                                                                                               | tings utilized within model<br>ple flat/simple elevated/complex)                                                                                                                                                                                                         |                 | Y                   | 45<br>45              |



Page 76 of 83

|          | Client                                                                                         | Report                                | Version              | Report No.          | Date                                          |
|----------|------------------------------------------------------------------------------------------------|---------------------------------------|----------------------|---------------------|-----------------------------------------------|
| Sharples | s Environmental Services                                                                       | Atmospheric Impact Report             | 05                   | YTC1547SES/05       | 2022-09-09                                    |
|          | 7                                                                                              |                                       |                      | 1 1                 |                                               |
|          |                                                                                                | sectors used and why (if applicabl    | e)                   | Y                   | 45                                            |
|          | Specify assumption                                                                             | is (if applicable)                    |                      | NA                  |                                               |
|          | Include discussion                                                                             | on non-regulatory settings utilized c | and reasons why      | NA                  |                                               |
|          | Describe the receptors                                                                         | grids utilized within the analysis    |                      |                     |                                               |
|          | Property line resolution                                                                       |                                       |                      | Y                   | 45                                            |
|          | Fine grid resolution                                                                           |                                       |                      | Y                   | 45                                            |
| 5.4      | Medium grid resolu                                                                             | tion(s)                               |                      | Y                   | 45                                            |
|          | Course grid resoluti                                                                           | on                                    |                      | Y                   | 45                                            |
|          |                                                                                                | ive location resolutions and sizes    |                      | Y                   | 45                                            |
|          | • Figures that show locations of receptors relative to modelled facility and terrain features. |                                       |                      | Y                   | 46                                            |
|          | Chapter 6: Am                                                                                  | bient impact results documentation    | n                    | Submitted<br>Yes/No | Comments,<br>References                       |
| 6        | At a minimum, the Amb<br>documented as follows                                                 | ient Air Quality Standards results ar | e to be              |                     |                                               |
|          | Table(s) of modelling re                                                                       |                                       |                      |                     |                                               |
|          | 1. Pollutant                                                                                   |                                       |                      | Y                   | 47-71                                         |
|          | 2. Averaging time                                                                              |                                       |                      | Y                   | 47-71                                         |
|          | 3. Operating scenario                                                                          | 1                                     |                      | Y                   | 47-71                                         |
| 6.1      | 4. Maximum modelled concentration                                                              |                                       |                      | Y                   | 47-71                                         |
| 0.1      | 5. Receptor location of maximum impact (coordinates)                                           |                                       |                      | Y                   | 47-71                                         |
|          | 6. Receptor elevation                                                                          |                                       |                      | Y                   | 47-71                                         |
|          | 7. Date of maximum i                                                                           | mpact                                 |                      | Y                   | 47-71                                         |
|          | 8. Grid resolution at maximum impact                                                           |                                       |                      | Y                   | 47-71                                         |
|          | 9. Name of output e-f                                                                          | ile(s) where data was taken from.     |                      |                     | 47-71                                         |
|          | Figure(s) showing sourc                                                                        | e impact area including               |                      |                     | 47-71                                         |
|          | 1. UTM coordinates or                                                                          | n horizontal and vertical axis        |                      | Y                   | 47-71                                         |
|          | 2. Modelled facility                                                                           |                                       |                      | Y                   | 47-71                                         |
|          | • Bo                                                                                           | undary                                |                      |                     | 47-71                                         |
| 6.2      | • Bu                                                                                           | ildings                               |                      |                     | 47-71                                         |
| 5.2      | • En                                                                                           | nission points                        |                      |                     | 47-71                                         |
|          | 3. Topography feature                                                                          | es                                    |                      | Y                   | 47-71                                         |
|          | 4. Isopleths of impact                                                                         | concentrations                        |                      | Y                   | 47-71                                         |
|          | 5. Location and value                                                                          | of maximum impact                     |                      | Y                   | 47-71                                         |
|          | 6. Location and value                                                                          | of maximum cumulative impact.         |                      | Y                   | 47-71                                         |
|          | Chapter 7: Ambie                                                                               | ent impact supporting documentat      | ion                  | Submitted<br>Yes/No | Comments,<br>References                       |
| 7.1      | All warning and informa                                                                        | itional messages within modelling o   | putput files must be | Y                   | ERRORFIL option<br>ignored (not<br>necessary) |
|          |                                                                                                |                                       |                      |                     | Pollutant NO2 not supported.                  |



|          | Client                                                       | Report                                                                                                                           | Version          | Report No.                           | Date                                                                                                                                       |
|----------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Sharples | s Environmental Services                                     | Atmospheric Impact Report                                                                                                        | 05               | YTC1547SES/05                        | 2022-09-09                                                                                                                                 |
| 7.2      | <ol> <li>Input &amp; out</li> <li>Input &amp; out</li> </ol> | to be submitted with report<br>put files for models<br>put files for pre-processors<br>put files for post-processors<br>in files |                  | All files<br>available<br>on request | POLLUTID switched<br>to "OTHER" (US<br>NAAQS for 1-hr<br>NO2 is not<br>supported by<br>multi-chemical<br>utility. Not<br>applicable in SA) |
| 7.3      |                                                              | t and description of electronic files                                                                                            |                  | All files<br>available<br>on request |                                                                                                                                            |
| 7.4      | Report shall include a d                                     | iscussion on deviations from the mo                                                                                              | delling protocol | NA                                   |                                                                                                                                            |



Page 78 of 83

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

# 13. Appendix C: Specialist Report Requirements<sup>31</sup>

| Specialist reports                                                                                                                                                                                                                             | Submitted<br>Yes/No | Comments,<br>References                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------|
| A specialist report prepared in terms of these Regulations must contain                                                                                                                                                                        |                     |                                        |
| (a) details of:                                                                                                                                                                                                                                |                     |                                        |
| (i) the specialist who prepared the report; and                                                                                                                                                                                                | Y                   | 81                                     |
| (ii) the expertise of that specialist to compile a specialist report including a curriculum vitae;                                                                                                                                             | Y                   | 81                                     |
| (b) a declaration that the specialist is independent in a form as may be specified by the competent authority;                                                                                                                                 | Y                   | 83                                     |
| (c) an indication of the scope of, and the purpose for which, the report was prepared;                                                                                                                                                         | Y                   | 6                                      |
| (cA) an indication of the quality and age of base data used for the specialist report;                                                                                                                                                         | Y                   | 29                                     |
| (cB) a description of existing impacts on the site, cumulative impacts of the proposed development and levels of acceptable change;                                                                                                            | Y                   | 47-71                                  |
| (d) the duration, date and season of the site investigation and the relevance of the season to the outcome of the assessment;                                                                                                                  | Y                   | 26                                     |
| (e) a description of the methodology adopted in preparing the report or carrying out the specialised process inclusive of equipment and modelling used;                                                                                        | Y                   | 45                                     |
| (f) details of an assessment of the specific identified sensitivity of the site related<br>to the proposed activity or activities and its associated structures and<br>infrastructure, inclusive of a site plan identifying site alternatives; | Y                   | 15                                     |
| (g) an identification of any areas to be avoided, including buffers;                                                                                                                                                                           | NA                  |                                        |
| (h) a map superimposing the activity including the associated structures and infrastructure on the environmental sensitivities of the site including areas to be avoided, including buffers;                                                   | NA                  |                                        |
| (i) a description of any assumptions made and any uncertainties or gaps in knowledge;                                                                                                                                                          | Y                   | 15, 22                                 |
| ( j) a description of the findings and potential implications of such findings on the impact of the proposed activity or activities;                                                                                                           | Y                   | 47                                     |
| (k) any mitigation measures for inclusion in the EMPr;                                                                                                                                                                                         | NA                  |                                        |
| (I) any conditions for inclusion in the environmental authorisation;                                                                                                                                                                           | NA                  |                                        |
| (m) any monitoring requirements for inclusion in the EMPr or environmental authorisation;                                                                                                                                                      | Y                   | As per G.N. 893 of<br>2013, as amended |
| (n) a reasoned opinion                                                                                                                                                                                                                         |                     |                                        |
| (i) whether the proposed activity, activities or portions thereof should be authorised;                                                                                                                                                        | Y                   | 4                                      |
| (iA) regarding the acceptability of the proposed activity or activities; and                                                                                                                                                                   | Y                   | 4                                      |

<sup>31</sup> Appendix 6, EIA Regulations



| Client                                                                                                                            | Report                                                                                                                                                                                                                           | Version | Report No.    | Date       |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------|------------|
| Sharples Environmental Services                                                                                                   | Atmospheric Impact Report                                                                                                                                                                                                        | 05      | YTC1547SES/05 | 2022-09-09 |
| be authorised, any avoidance, m                                                                                                   | f the opinion is that the proposed activity, activities or portions thereof should<br>authorised, any avoidance, management and mitigation measures that<br>uld be included in the EMPr, and where applicable, the closure plan; |         |               |            |
| (o) a description of any consultation process that was undertaken during the course of preparing the specialist report;           |                                                                                                                                                                                                                                  |         | NA            |            |
| (p) a summary and copies of any comments received during any consultation process and where applicable all responses thereto; and |                                                                                                                                                                                                                                  |         | NA            |            |
| (q) any other information requested by the competent authority.                                                                   |                                                                                                                                                                                                                                  | NA      |               |            |



Page 80 of 83

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

## 14. Appendix D: Curriculum Vitae of Specialist



Page 81 of 83



| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

## **15.** Appendix E: Applicant Declaration of Accuracy

STAATSKOERANT, 11 OKTOBER 2013

No. 36904 21

#### ANNEXURE A

#### DECLARATION OF ACCURACY OF INFORMATION - APPLICANT

Name of Enterprise:

Declaration of accuracy of information provided:

Atmospheric Impact Report in terms of section 30 of the Act.

.

4

I, \_\_\_\_\_[duly authorised], declare that the information provided in this atmospheric impact report is, to the best of my knowledge, in all respects factually true and correct. I am aware that the supply of false or misleading information to an air quality officer is a criminal offence in terms of section 51(1)(g) of this Act.

Signed at \_\_\_\_\_ on this \_\_\_\_\_ day of \_\_\_\_\_

SIGNATURE

CAPACITY OF SIGNATORY

This gazette is also available free online at www.gpwonline.co.za



Page 82 of 83

| Client                          | Report                    | Version | Report No.    | Date       |
|---------------------------------|---------------------------|---------|---------------|------------|
| Sharples Environmental Services | Atmospheric Impact Report | 05      | YTC1547SES/05 | 2022-09-09 |

### 16. Appendix F: Specialist Declaration of Independence

22 No. 36904

GOVERNMENT GAZETTE, 11 OCTOBER 2013

#### ANNEXURE B

#### DECLARATION OF INDEPENDENCE - PRACTITIONER

| Name of Practitioner:  | Caitlin Morris |  |
|------------------------|----------------|--|
| Name of Registration   | Body: NA       |  |
| Professional Registrat | ion No.: NA    |  |

Declaration of independence and accuracy of information provided:

#### Atmospheric Impact Report in terms of Section 30 of the Act.

I, <u>Caitlin Morris</u>, declare that I am independent of the applicant. I have the necessary expertise to conduct the assessments required for the report and will perform the work relating the application in an objective manner, even if this results in views and findings that are not favourable to the applicant. I will disclose to the applicant and the air quality officer all material information in my possession that reasonably has or may have the potential of influencing any decision to be taken with respect to the application by the air quality officer. The information provided in this atmospheric impact report is, to the best of my knowledge, in all respects factually true and correct. I am aware that the supply of false or misleading information to an air quality officer is a criminal offence in terms of section 51(1) (g) of this Act.

| Signed at Cape Town | on this 09th | day of | September 2022 |
|---------------------|--------------|--------|----------------|
| R                   |              | _ /    |                |

SIGNATURE

Chemical Engineer

CAPACITY OF SIGNATORY

This gazette is also available free online at www.gpwonline.co.za



Page 83 of 83