Specialist Botanical and Terrestrial assessment for the proposed diesel storage and distribution business on Erven 56 & 57 in the Mossdustria complex near Mossel Bay.

Prepared in accordance with the "Protocol for the Specialist Assessment and minimum report content requirements for environmental impacts in Terrestrial Biodiversity and Terrestrial Plant Species".

Prepared for Sharples Environmental

Prepared by: Bianke Fouché (MSc; *Cand.Sci.Nat.* No. 141757)

Reviewed by: David Hoare (PhD; *Pr.Sci.Nat.* No. 400221/05)

Confluent Environmental

18 May 2023

Tel: +27 78 646 4886

Email: bianke@confluent.co.za

TABLE OF CONTENTS

DEC	CLARATION OF SPECIALIST INDEPENDENCE	VI
BIA	NKE FOUCHÉ ABRIDGED CV	VII
DAV	ID HOARE ABRIDGED CV	VII
1.	INTRODUCTION	
1.1	GENERAL SITE LOCATION	8
1.2	THE CURRENT DEVELOPMENT LAYOUT	8
2.	TERMS OF REFERENCE AND SCOPE	
2.1	TERRESTRIAL BIODIVERSITY REPORT	10
2.2	TERRESTRIAL PLANT SPECIES REPORT	11
2.3	ASSESSMENT PHILOSOPHY	11
2.4	ONLINE SCREENING TOOL	12
3.	METHODOLOGY	14
3.1	DESKTOP ASSESSMENT	14
3.2	FIELD ASSESSMENT	14
3.3	ASSUMPTIONS & LIMITATIONS	14
4.	RESULTS: DESKTOP ASSESSMENT	
4.1	CLIMATE	16
4.2	GEOLOGY AND SOIL	16
4.3	VEGETATION TYPE(S)	17
4.4	CONSERVATION PLANNING	17
4.5	HISTORICAL AERIAL IMAGERY	19
4.6	THE PROJECT AREA OF INFLUENCE (PAOI)	22
5.	RESULTS: FIELD ASSESSMENT	
5.1	SPECIES LIST AND SPECIES ACCUMULATION CURVE FOR THE SITE	23
5.2	PLANT SPECIES OF CONSERVATION CONCERN (SCC)	25
5.3	NATURALISED EXOTIC AND INVASIVE ALIEN PLANTS	27
6.	SITE ECOLOGICAL IMPORTANCE (SEI)	30
6.1	SEI ASSESSMENT	
7.	SITE SENSITIVITY VERIFICATION	
7.1	TERRESTRIAL BIODIVERSITY	
7.2	BOTANICAL DIVERSITY	
8.	IMPACT ASSESSMENT	
8.1	LAYOUT AND DESIGN PHASE	
	8.1.1 Recommendation for staff parking spaces	

	8.1.2 Recommendation to avoid non-native species planted on the site	34
8.2	CONSTRUCTION PHASE	35
	8.2.1 Impact of habitat loss and degradation	35
	8.2.3 Impact of construction vehicles on sensitive habitat surrounding the development site	40
8.3	CONCLUDING CONSTRUCTION WORKS.	42
8.4	OPERATIONAL PHASE	42
8.5	CUMULATIVE IMPACTS	42
•		
9.	CONCLUSIONS	43
9. 10.	REFERENCES	
10.		44
10.	REFERENCES	44 45
10. APP	REFERENCES	 44 45 45
10. APP 10.1	REFERENCES ENDIX SITE ECOLOGICAL IMPORTANCE (SEI) METHODS	44 45 45 46

LIST OF TABLES

Table 1: The species of conservation concern (SCC) identified by the DFFE screening tool report.	12
Table 2: A provisional species list, including all of the species that were recorded on Erven 56 & 57 duringthe site visit on 15 March 2023. The only SCC on the site is highlighted in green; the rest ofthe plants that were observed are not threatened.	24
Table 3: A summary of the IUCN Red Rist categories used for the Red List of South African Plants (SANBI, 2020), and adapted Orange List categories (Victor & Keith, 2005)	25
Table 4:The threatened plant species recorded on the site and in the nearby surrounding landscape. Highlighted in green is the species found on the site. Observations made by other people on iNaturalist before the site assessment for the surrounding landscape is available in Appendix 10.3.	26
Table 5:Introduced and invasive plant species that were found on the site. Orange species are NEMBA and/or CARA listed invasive species, and yellow species can displace native vegetation, reducing biodiversity	28
Table 6: The evaluation of the SEI for the various vegetation communities and habitats present within, and surrounding the PAOI.	32
Table 7: Mitigation measures for the site based on the SEI ratings of the various vegetation types present on the site	32
Table 8: Construction phase impact - Habitat loss and degradation	36
Table 9: Construction phase impact - Habitat loss and degradation	39
Table 10: Construction phase impact - Vehicles impact on sensitive habitat surrounding the development site	41
Table 11: The matrix that defines the biodiversity importance (BI) of a given habitat type, as identified from a desktop and field assessment.	45
Table 12: The matrix that defines the site ecological importance (SEI) of a given habitat type, as identified from a desktop and field assessment.	46

Table 13: Categorical descriptions for impacts and their associated ratings	46
Table 14: Value ranges for significance ratings, where (-) indicates a negative impact and (+) indicates a positive impact	46
Table 15: Definition of reversibility, irreplaceability and confidence ratings.	47
Table 16: Observations made by various iNaturalist users of plant species in the environment near Erven 56 and 57 of Mossductria, within the area defined in Fig. 10	47

LIST OF FIGURES

Figure 1: The general location of the proposed development, With an inset map showing the site in the Mossdustria complex.	8
Figure 2: The site development plan (SDP) with the reported planned areas to be covered by the proposed development on Erven 56 and 57 in the Mossdustria complex.	9
Figure 3: General climate data for Mossel Bay showing A) the long-term temperature trends between 2010 and 2022, B) the average maximum and minimum temperatures by month, C) long term precipitation data between 2010 and 2022, and D) the average rainfall per month for Mossel Bay	16
Figure 4: A map of the vegetation present on Erf 56 and 57 as derived after the site assessment on the 15 th of March 2023.	. 17
Figure 5: The mapped Western Cape Biodiversity Spatial Plan (WC BSP) categories that have been mapped for the site are terrestrial CBA1 and ONAs.	.19
Figure 6: Historical imagery for the proposed development and wider Mossdustria area (1939 to May 2019). The top row of images are zoomed out to show the general pattern for the surrounding area as well as the proposed development site and represents the oldest imagery available for the area. The bottom row of images were all taken in the 21 st century	20
Figure 7: The most recent historical imagery for the proposed development site (July 2020 to October 2022).	.21
Figure 8: An image of the northern boundary of the site showing the site currently dominated by graminoids, with a dense <i>Acacia saligna</i> stand just north of the recently cleared Erven 56 and 57	21
Figure 9: The Project Area of Influence (PAOI) for the proposed development site, illustrated as the primary PAOI features, and a 2m disturbance strip (secondary PAOI) outside of the boundaries of erven.	22
Figure 10: The area on iNat within which observations were noted to improve the understanding of potential SCC for the site and other species present nearby. Observation data in the species accumulation curve on the right show only site assessment observations. Additional plant species observations made by other people are listed in Appendix 10.3.	23
Figure 11: A heatmap showing the approximate locations of <i>Hermannia lavandulifolia</i> plants on the proposed development site, as well as the path walked on the site during the site assessment on the 15 th of March 2023	26
Figure 12: Photos showing the SCC found on the proposed development site (<i>Hermannia lavandulifolia</i>), as well as other SCC recorded on iNaturalist very near the proposed development site (see Appendix 10.3).	27
Figure 13: Photos of the NEMBA and/or CARA listed invasive species that were observed on the site. All photos were taken by Bianke Fouche during the site assessment	29

Figure 14: A visual representation of the areas where different SEI categories have been mapped, based on the vegetation observed on the site	31
Figure 15: The iterative process of avoiding and minimising the predicted impacts on biodiversity and ecosystem services, as described in (Ekstrom et al., 2015)	34
Figure 16: An illustration of open pavers that can be incorporated into the design of this project for staff parking areas. This is not appropriate for truck parking areas on the site.	34
Figure 17: Examples of construction fencing that can be used on the site.	37
Figure 18: An example of a protected stockpile (imagfrom stormwaterhawaii.com)	37
Figure 19: Examples of silt socks placed perpendicular to the flow of water. These reduce the force of water flow, erosion, and can prevent unwanted sedimentation on the site	37

ABBREVIATIONS

WC BSP	Western Cape Biodiversity Spatial Plan
CBA	Critical Biodiversity Area
CD:NGI	Chief Directorate: National Geo-spatial Information
IAPs	Invasive Alien Plants
NEM:BA	National Environmental Management: Biodiversity Act
CARA	Conservation of Agricultural Resources Act
ONA	Other Natural Areas
PAOI	Project Area of Influence
SANBI	South African National Biodiversity Institute
SCC	Species of Conservation Concern
SDP	Site Development Plan
SEI	Site Ecological Importance
ECO	Environmental Control Officer

DECLARATION OF SPECIALIST INDEPENDENCE

Bianke Fouche from Confluent Environmental was appointed by Sharples Environmental to provide specialist consulting services for the Basic Assessment / Environmental Impact Assessment for the proposed Confuel (Pty) Ltd development on Erven 56 & 57 of Mossdustria, near Mossel Bay. The consulting services comprise an assessment of the potential impacts on flora, vegetation, and terrestrial ecology of the proposed development footprint. The following declaration is given by the appointed specialist:

- I consider myself bound to the rules and ethics of the South African Council for Natural Scientific Professions (SACNASP).
- At the time of conducting the field assessment and compiling this report I did not have any interest, hidden or otherwise, in the proposed development that this report has reference to, except for financial compensation for work done in a professional capacity.
- Work performed for this site was done in an objective manner. Even if this results in views and findings that are not favourable to the client/applicant, I will not be affected in any manner by the outcome of any environmental process of which this report may form a part, other than being members of the general public.
- I declare that there are no circumstances that may compromise my objectivity in performing this specialist investigation. I do not necessarily object to or endorse any proposed developments, but aim to present facts, findings and recommendations based on relevant professional experience and scientific data.
- I do not have any influence over decisions made by the governing authorities.
- I undertake to disclose all material information in my possession that reasonably has or may have the potential of influencing any decision to be taken with respect to the application by a competent authority to such a relevant authority and the applicant.
- I have the necessary qualifications and guidance from professional experts in conducting specialist reports relevant to this application, including knowledge of the relevant Act, regulations and any guidelines that have relevance to the proposed activity.
- This document and all information contained herein is and will remain the intellectual property of Confluent Environmental. This document, in its entirety or any portion thereof, may not be altered in any manner or form, for any purpose without the specific and written consent of the specialist investigators.
- All the particulars furnished by me in this document are true and correct.

, Al

Signed: 24 May 2023

BIANKE FOUCHÉ ABRIDGED CV

Qualifications

- B.Sc. Environmental Sciences,
- B.Sc. Honours (Botany),
- M.Sc. Conservation Biology 2022-2023 (currently completing at the University of Cape Town).

SACNASP Registration No: 141757 (Candidate Botanical Scientist)

Skills and Core Competencies

- My MSc research will add to our understanding of plant community niche construction and Alternative Stable State (ASS) theory. The knowledge gained will be used to advise landscape stewardship practices, especially regarding reforestation initiatives in the Overstrand.
- I have worked closely with the conservation team of the Grootbos Foundation, where I assisted with vegetation surveys, mounting voucher specimens in the Grootbos herbarium, and taken part in controlled fynbos fires in the Overberg.
- Postgraduate studies of mine included assessing the allelopathic effects of *Eucalyptus* leaves on garden peas and leeks and assessing the accuracy of the climate leaf analysis multivariate programme (CLAMP) in predicting the climate of fynbos vegetation.
- In Cape Town I have regularly taken part in alien clearing activities and helped to identify relevant listed invasive plants.
- I am currently a member of the Botanical Society of South Africa and the custodians for rare and endangered wildflowers (CREW) in George.

DAVID HOARE ABRIDGED CV

Qualifications

- B.Sc. (Botany and Zoology) Rhodes University.
- B.Sc. Honours (Botany) Rhodes University,
- M.Sc. (Botany) University of Pretoria
- PhD Nelson Mandela Metropolitan University, Port Elizabeth

SACNASP Registration No: 400221/05 (Professional Ecological & Botanical Scientist)

Skills and Core Competencies

- Botanical researcher in projects involving the description of terrestrial and coastal ecosystems.
- Broad expertise in the ecology and conservation of grasslands, wetlands, fynbos, and coastal ecosystems. Project expertise includes baseline biological surveys for the mining, forestry and utility industries, national vegetation mapping programmes for government and research organisations, natural resource management using satellite remote sensing and aerial photography, environmental management, and project management (research projects).
- Botanical Specialist responsible for vegetation inventories, vegetation, habitat, and land-use mapping, threatened plant species survey, alien species survey.
- Professional member: South African Institute of Ecologists and Environmental Scientists.

1. INTRODUCTION

1.1 General Site Location

The proposed development will occur over erven 56 and 57 and is located north of Danabaai and northwest of Mossel Bay in the Mossdustria industrial development complex (Fig. 1). The proposed development site is located ca. 5.5 km from the coastline, 5.3 km from Danabaai, and 12.5 km from Mossel Bay. The perimeter of both erven is ca. 550 m, which includes a total area of ca. 1.82 ha. The site can be accessed from the R327, taking the turnoff onto Barrier Street, and then Mzuki Street which runs along the south of the erven. On the western neighboring property, there is an existing building with businesses stands, while the erf immediately to the east of the site currently contains no buildings. To the north an invaded (mostly *Acacia saligna*) open section occurs before the next row of industrial business developments of the Mossdustria complex.

Figure 1: The general location of the proposed development, With an inset map showing the site in the Mossdustria complex.

1.2 The current development layout

The total area covered by the erven is 18155 m^2 and the total area reported in the site development plan (SDP; Fig. 2) is 1477.28 m^2 . This means that the proposed development coverage schedule is ca. 8% of the site. This coverage does not account for the driveways, fences, basic services installation (like water and electricity), or parking areas for cars and trucks. The actual area that will be affected by the development of the site will therefore be substantially larger than the 8% reported in the SDP. A breakdown of the planned development is summarized below. Both erven will require new sewer, electricity (including a mini substation in the south-western corner of Erf 57), and water connections.

The proposed development on Erf 56 will include:

- A guard room,
- driveway for trucks,
- sliding gate,
- high wall and "clearvu" fence sections,
- Truck parking areas
- Truck wash bay

The proposed development on Erf 57 will include:

- A brick boundary wall,
- A "clearvu" fence and gate,
- main entrance sliding gate,
- main office and entrance porch with 2 parking bays,
- driveways,
- storeroom,
- ablution block,
- canteen & storage rooms,
- dining area, garden, and laundry section,
- bulk office,
- Diesel locker room,
- Diesel covered patio,
- Diesel office / IT room,
- filling stations (space for x7 trucks),
- water reservoirs (370 Kl x2),
- diesel tanks (86 000 L x8 and 46 000 L x3),
- parking spaces for truck

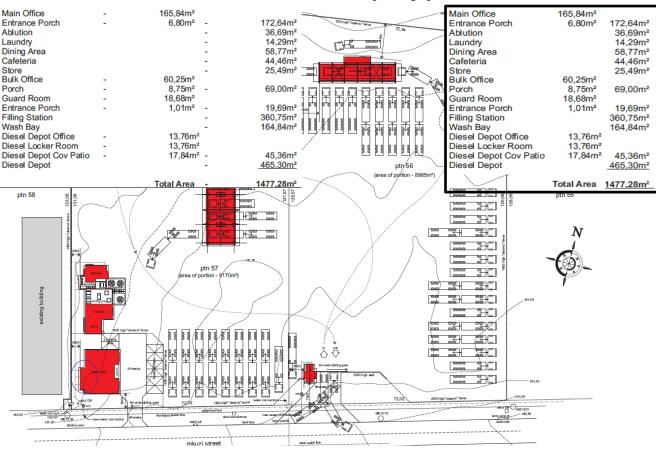


Figure 2: The site development plan (SDP) with the reported planned areas to be covered by the proposed development on Erven 56 and 57 in the Mossdustria complex.

2. TERMS OF REFERENCE AND SCOPE

This screening report provides information on the terrestrial biodiversity and terrestrial plant species sensitivity of the proposed development site. The results presented are based on a desktop and field assessment, which includes a consideration of historical photographic records of the site. The assessment presented in this report follows the Protocol for the Specialist Assessment and Minimum Report Content Requirements for Environmental Impacts on Terrestrial Biodiversity, and Terrestrial Plant Species.

This site sensitivity assessment follows the requirements of:

- The Environmental Impact Assessment Regulations, as promulgated in terms of Section 24 (5) of the National Environmental Management Act, 1998 (Act No. 107 of 1998), which includes:
 - The protocol for the specialist assessment and minimum report content requirements for environmental impacts on terrestrial plant species (30 October 2020).
 - The protocol for the specialist assessment and minimum report content requirements for environmental impacts on terrestrial biodiversity (20 March 2020).
- Additional guidelines for the terrestrial biodiversity theme:
 - The second edition of Ecosystem Guidelines for Environmental Assessment in the Western Cape (de Villiers et al., 2016).
 - The Western Cape Biodiversity Spatial Plan Handbook and summary booklet (CapeNature, 2017; Pool-Sandvliet et al., 2017).

The findings of the Terrestrial and Botanical Biodiversity Specialist Assessment must be incorporated into the Basic Assessment Report or the Environmental Impact Assessment Report, including the mitigation and monitoring measures as identified, which must be incorporated into the EMPr where relevant. The assessment was undertaken by a specialist registered with the South African Council for Natural Scientific Professionals (SACNASP) with relevant expertise in the field of Botanical and/or Ecological science.

2.1 Terrestrial Biodiversity Report

- The assessment was undertaken on the preferred site and within the proposed development footprint.
- The assessment provides a baseline description of the site which includes:
 - a description of the ecological corridors, functions, drivers, and processes of the system and how the proposed development will impact these within the preferred site.
 - the description and mapping of any significant terrestrial landscape features (including rare or important flora-faunal associations), main vegetation types, threatened ecosystems, ecological connectivity, habitat fragmentation, and important habitats.
 - the assessment is based on the results of a site inspection and desktop assessment, where terrestrial critical biodiversity areas (CBAs), terrestrial ecological support areas (ESAs), other natural areas (ONAs), protected areas (PAs), priority areas for PA expansion, and indigenous forests were identified and mapped, including:

- the reasons why an area has been identified as a CBA or ESA, and an indication of whether or not the proposed development is consistent with maintaining the CBA in a natural or near natural state or in achieving the goal of rehabilitation.
- the impact on ecosystem threat status, and the extent that the proposed development will impact on the functionality of ESAs.
- the impact on overall species and ecosystem diversity of the site in relation to the remaining areas.
- the impact on any changes to threat status of populations of species of conservation concern in the CBA.
- an opinion on whether the proposed development aligns with the objectives or purpose of CBAs, ESAs, ONAs, and PAs identified at the site.
- The assessment also includes the impact(s) on the terrestrial habitat of a SWSA and impacts of the proposed development on habitat condition and species in FEPA sub-catchments.

2.2 Terrestrial Plant Species Report

- Where the nature of the activity is not expected to have an impact on species of conservation concern (SCC) beyond the boundary of the preferred site, the study area is the proposed development footprint within the preferred site.
- Where the nature of the activity is expected to have an impact on SCC beyond boundary of the preferred site, the project areas of influence (PAOI) must be determined by the specialist in accordance with Species Environmental Assessment Guideline, and the study area must include the PAOI, as determined.
- The assessment was undertaken within the study area and was undertaken in accordance with the Species Environmental Assessment Guideline which must:
 - Identify the SCC which were observed or are likely to occur within the study area. Discuss the presence or likelihood of additional SCC including threatened species not identified by the screening tool
 - Provide evidence, and a literature review on the distribution, location, viability, population size of the SCC, conservation importance and interventions, as well as any national or provincial species management plans of each SCC found or observed within the study area.
 - Identify the nature and the extent of potential impacts of the proposed development to the population of the SCC located within the study area.
 - Determine the potential impact of the proposed development on the habitat and long-term viability of the SCC located within the study area.
 - Determine buffer distances (if necessary) as per the Species Environmental Assessment Guidelines used for the population of each SCC.

2.3 Assessment philosophy

The Cape Floristic Region of South Africa is a biodiversity hotspot with a high level of species endemism and diversity. Different sites vary in their uniqueness, ecological complexity, and degree to which they have been disturbed. Potential negative impacts will be assessed keeping in mind the important biodiversity features on the site, including species, ecosystems, and processes. An impact assessment for the proposed development requires an evaluation of the conservation value of the site relative to other natural areas nearby. The hierarchy of important biodiversity features that can be used to evaluate the importance and potential for a no-go scenario for the site are as follows:

Species

- 1. Threatened plant species
- 2. Nationally protected tree species

Ecosystems

- 1. Threatened ecosystems
- 2. Protected ecosystems
- 3. Critical biodiversity areas
- 4. Centres of endemism

Processes

- 1. Ecosystem corridors
- 2. Mega-conservancy networks
- 3. Rivers and wetlands
- 4. Important topographical features

This aim of this report is to present and interpret a comprehensive species list for the site to characterise the vegetation on the site and describe the vegetation type of the site. This assessment highlights rare, threatened, protected, and other species / habitats and ecosystems of conservation importance that are present on the site (or are likely to be present) and are likely to suffer negative consequences as a result of the proposed activity / development on the site.

2.4 Online Screening Tool

The Department of Forestry, Fisheries, and the Environment (DFFE) screening tool report identified the **terrestrial plant theme** sensitivity of the site as Medium. The plant species that were identified by the screening tool (Table 1) all have a medium screening tool sensitivity, which indicates that:

"Model-derived suitable habitat areas for threatened and/or rare species are included in the medium sensitivity level. Two types of spatial models have been included. The first is a simple rule-based habitat suitability model where habitat attributes such as vegetation type and altitude are selected for all areas where a species has been recorded to occur. The second is a species distribution model which uses species occurrence records combined with multiple environmental variables to quantify and predict areas of suitable habitat. The models provide a probability-based distribution indicating a continuous range of habitat suitability across areas that have not been previously surveyed. A probability threshold of 75% for suitable habitat has been used to convert the modelled probability surface and reduce it into a single spatial area which defines areas that fall within the medium sensitivity level." ~ (Verburgt et al., 2020)

Screening tool sensitivity	Feature(s)	IUCN Red List status	Growth Form	Probability of occurrence
Medium	Agathosma eriantha	Vulnerable	Shrub	Low
Medium	Agathosma microcarpa	Vulnerable	Dwarf Shrub	Low
Medium	Agathosma muirii	Vulnerable	Shrub	Low
Medium	Agathosma riversdalensis	Vulnerable	Shrub	Medium
Medium	Argyrolobium harmsianum	Endangered	Herbaceous perennial	Very Low
Medium	Aspalathus campestris	Vulnerable	Herbaceous perennial	Low
Medium	Aspalathus obtusifolia	Vulnerable	Herbaceous perennial	Medium
Medium	Drosanthemum lavisii	Endangered	Succulent	Low
Medium	Erica unicolor subsp. mutica	Endangered	Shrub	Medium
Medium	Euchaetis albertiniana	Endangered	Shrub	Very Low
Medium	Hermannia lavandulifolia	Vulnerable	Herbaceous perennial	FOUND
Medium	Lampranthus ceriseus	Vulnerable	Succulent	Medium
Medium	Lampranthus diutinus	Endangered	Succulent	Low
Medium	Lampranthus fergusoniae	Rare	Succulent	Very Low

Table 1: The species of conservation concern (SCC) identified by the DFFE screening tool report.

Medium	Lampranthus foliosus	Endangered	Succulent	Low
Medium	Lampranthus pauciflorus	Endangered	Succulent	Medium
Medium	Lebeckia gracilis	Endangered	Shrub	Low
Medium	Leucadendron galpinii	Vulnerable	Shrub	Low
Medium	Leucospermum muirii	Endangered	Shrub	Low
Medium	Leucospermum praecox	Vulnerable	Shrub	Low
Medium	Muraltia cliffortiifolia	Vulnerable	Perennial	Medium
Medium	Muraltia knysnaensis	Endangered	Perennial	Low
Medium	Nanobubon hypogaeum	Endangered	Herbaceous perennial	Very Low
Medium	Polygala pubiflora	Vulnerable	Herbaceous perennial	Medium
Medium	Ruschia leptocalyx	Endangered	Succulent	Low
Medium	Selago glandulosa	Vulnerable	Herbaceous perennial	Low
Medium	Selago villicaulis	Vulnerable	Herbaceous perennial	Very Low
Medium	Sensitive species 1024	Endangered	Tuberous geophyte	Low
Medium	Sensitive species 153	Endangered	Tuberous perennial	Low
Medium	Sensitive species 268	Endangered	Succulent	Low
Medium	Sensitive species 500	Endangered	Tuberous geophyte	Low
Medium	Sensitive species 516	Endangered	Succulent	Low
Medium	Sensitive species 654	Endangered	Tuberous geophyte	Low
Medium	Sensitive species 800	Vulnerable	Geophyte	Low
Medium	Thamnochortus muirii	Vulnerable	Graminoid	Low
Medium	Wahlenbergia polyantha	Vulnerable	Herbacous perennial	Low

The terrestrial biodiversity sensitivity theme was identified as Very High according to the Screening tool report for the site. The reasons given for this sensitivity were that the site is part of a Critical Biodiversity Area 1 (CBA1) and because the site falls within a Freshwater Ecosystem Priority Area (FEPA). Due to the identified sensitivities for the terrestrial biodiversity and plant themes, a specialist assessment needs to be completed in terms of Sections 24(5)(a) and (h) and 44 of the National Environmental Management Act, 1998, when applying for Environmental Authorisation (March 2020),

"An applicant intending to undertake an activity identified in the scope of this protocol, on a site identified on the screening tool as being of "very high sensitivity" for terrestrial biodiversity, must submit a Terrestrial Biodiversity Specialist Assessment".

Furthermore, this legislation states that "when applying for Environmental Authorisation (October 2020),

"An applicant intending to undertake an activity identified in the scope of this protocol, on a site identified by the screening tool as being of "medium sensitivity" for terrestrial plant species, must submit either a Terrestrial Plant Species Specialist Assessment Report or a Terrestrial Plant Species Compliance Statement, depending on the outcome of a site inspection/site sensitivity verification undertaken".

3. METHODOLOGY

3.1 Desktop Assessment

The desktop assessment was performed using Cape Farm Mapper and QGIS version 3.28.3 "Firenze". Plant species data was sourced from the following sources:

- The DFFE screening tool listed SCC.
- Information on plant occurrence prior to the site visit was sourced from SANBIs Botanical Research and Herbarium Management System (BRAHMS) for the Plants of Southern Africa (POSA) database.
- iNaturalist observations of the property and surrounding areas.

Ecosystem/ vegetation type data was sourced from:

- The 2018 updated South African National Vegetation Map from SANBIs Biodiversity GIS (BGIS) database, and the National Biodiversity Assessment report of 2018 (Skowno et al., 2018).
- Shapefiles for the Western Cape Biodiversity Spatial Plan (WC-BSP) i.e., information on PAs, CBAs, ESAs, and ONAs were downloaded from BGIS database (CapeNature, 2017; Pool-Sandvliet et al., 2017).
- Cape Farm Mapper for additional spatial information required for the site.
- Chief Directorate: National Geo-spatial Information (CD: NGI) Geospatial Portal and Google Earth for the acquisition of historical aerial imagery of the site.
- The conservation status of ecosystems was found in the Revised National List of Ecosystems that are Threatened and in need of protection, published under the National Environmental Management: Biodiversity Act (Act No. 10, 2004, as revised in Nov. 2022), and also using The Vegetation of South Africa, Lesotho, and Swaziland (Mucina & Rutherford, 2006).

3.2 Field Assessment

Field work was undertaken on the 15th of March 2023. The method for identifying species was similar to a BioBlitz, also described as a "timed meander", where the specialist especially keeps an eye out for rarer and threatened species. Apart from shrubs that are more easily detectable in the field, this survey method tries to account for the short and single survey period, where detection probability of some rare and threatened species are low (Garrard et al., 2008; Wintle et al., 2012). The detection of annuals, small succulents, small herbs, and geophytes are lower than the detection probability for shrub plant species. This was taken into consideration during the site assessment to try and account for lower detection probabilities for some species (see the growth forms of plant SCC triggered in the screening tool in Table 1). Observations of individual species and environmental characteristics were documented using an app called "Spot Lens", which records location, elevation, date, time, and photo notes as a stamp on each photograph.

3.3 Assumptions & Limitations

This assessment is subject to a few assumptions, uncertainties, and limitations, as listed below:

• Only one survey took place during autumn on the 15th of March of 2023. Seasonal and time constraints always play a role in limiting the findings of a terrestrial specialist report.

- Some rare and threatened plant species are difficult to locate and easily overlooked in the field (e.g., succulent species, succulents, and species that occur as individual plants over a large geographical area). The species list for the area is limited to the findings of the one field assessment, as well as past records on iNaturalist and the Plants of Southern Africa (POSA) database for the proposed development site and its surrounding areas.
- Many plant species flower seasonally and are therefore difficult to identify outside of their flowering season. Environmental factors such as the fire regime and level of alien invasion influence the successional stage of the vegetation present at the site, and therefore the species visible at the time of assessment (Cowling et al., 2010; Privett et al., 2001).
- Effort was made to identify possible impacts for the layout and design phase of the project, but it is always possible that some impacts were missed or neglected. The exclusion of important impacts does not mean that they do not exist, and the development always has a duty of care to mitigate negative impacts to the environment.
- Effort was made to identify no-go areas and possible impacts for the layout and design phase of the project, but it is always possible that some impacts were missed or neglected. The exclusion of important impacts does not mean that they do not exist, and the development always has a duty of care to mitigate negative impacts to the environment.

4. RESULTS: DESKTOP ASSESSMENT

4.1 Climate

The nearest town to the proposed development site is Dana Bay to the south, and then Mossel Bay in the south-east. This area has a subtropical oceanic climate, and therefore the weather there is usually very mild (Fig. 3). Winter temperatures are mild, and summers are warm. Rain is not abundant, but rainfall is aseasonal, being relatively evenly distributed throughout the year. Winds from the interior of the country can bring very hot days, especially during spring and autumn seasons. Even during the winter hot days can occur when there are warm winds that blow from the mountains in the north. Despite the mild winters, the coldest nights of the year can have temperatures that drop to around 0° C. All graphs were sourced from worldweatheronline.com.

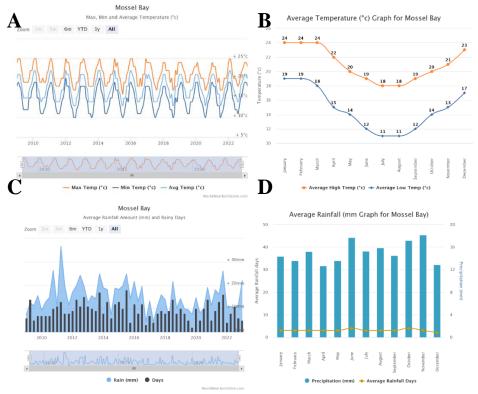


Figure 3: General climate data for Mossel Bay showing A) the long-term temperature trends between 2010 and 2022, B) the average maximum and minimum temperatures by month, C) long term precipitation data between 2010 and 2022, and D) the average rainfall per month for Mossel Bay.

4.2 Geology and Soil

The underlying substrate geology is mainly quarzitic sandstone of the Table Mountain Group, with some shales and siltstones in between that belong to the Bokkeveld Supergroup. Some Enon conglomerate may also be present in some areas, however this was not seen in Mossdustria. The erodibility of soils in this area is considered high (Cape Farm Mapper describes the erodibility factor as 0.67). Soil in this area has a marked clay accumulation in the soil profile and are strongly structured with diagnostic horizons easily identifiable in the soil profile. Soils in this area generally are not reddish in colour and have a dominant B horizon.

4.3 Vegetation type(s)

The whole of Mossdustria is mapped as **North Langeberg Sandstone Fynbos**, which is not a Red Listed ecosystem according to the Revised National List of Ecosystems that are Threatened and in Need of Protection (Dayaram et al., 2019; Mucina & Rutherford, 2006; NEM:BA Act, 2022). This ecosystem type is found only in the Western Cape and occurs over a broad altitude range (100 to 1800 m). The vegetation is mainly characterised by proteoid and restioid fynbos. Asteraceous fynbos is also found at lower altitudes. The Vlok vegetation map suggests that the proposed development site is at a transition between Petrosa Fynbos-Renosterveld and Proteus Fynbos-Renoster-Thicket. Currently the site represents disturbed vegetation that is just starting to recover following the clearance of vegetation from the entire site in late 2022. There are sections in the site that are adjacent to IA stands just outside of the property boundary, and so vegetation on the periphery of the site is prone to re-invasion by *Acacia saligna* (Fig. 4).

Figure 4: A map of the vegetation present on Erf 56 and 57 as derived after the site assessment on the 15th of March 2023.

4.4 Conservation Planning

The Biodiversity Spatial Plan for the Western Cape has mapped the proposed development site as being part of a terrestrial critical biodiversity area (CBA1) and other natural areas (ONA). Erf 56 is mostly mapped as an ONA, and Erf 57 is mostly mapped as a CBA1 (Fig. 5). The Biodiversity Spatial Plan (BSP) map is subject to ground truthing by comparing the observed environmental conditions with the definitions provided by the BSP. Given the past disturbance of the site and the fact that it is in the middle of the Mossdustria industrial complex, Erven 56 and 57 do not meet the definition for being considered CBA1 areas (BOX 1), as the vegetation on the site is not in a natural condition, and it is not feasible or practical to use these properties to contribute towards the biodiversity targets of the Western

Cape (see Appendix 10.4 for activities recommended under different BSP categories). Should the development go ahead, the majority of the area of Erven 56 and 57 will become areas with "No Natural Remaining" biodiversity in the areas that will be developed, used for driveways and parking. Since the industry that proposed for development here is considered a high impact industry, any realisation of the development activities occur with caution.

BOX 1: The Biodiversity Spatial Plan

Critical Biodiversity Area 1

Definition: Areas in a natural condition. Required to meet biodiversity targets for species, ecosystems or ecological processes and infrastructure.

Objective: Maintain in a natural or near-natural state, with no further loss of habitat. Degraded areas should be rehabilitated. Only low-impact, biodiversity-sensitive land uses are appropriate.

Other Natural Areas

Definition: These areas retain most of their natural character and perform biodiversity and ecological infrastructure functions but have not been prioritised in the current Western Cape Biodiversity Spatial Plan.

Objective: Minimise habitat and species loss to ensure ecosystem functionality through strategic landscape planning. Some flexibility in permissible land uses, but authorisation may still be required for high impact uses.

No Natural Remaining

Definition: Modified by human activity and no longer natural nor contributing to biodiversity targets. May still provide limited biodiversity and ecological infrastructure functions, even if never prioritised for conservation action.

Objective: Manage in a biodiversity-sensitive manner, aiming to maximise ecological functionality. Most flexibility i.t.o. potential land uses. Authorisation may still be required for high-impact land uses.

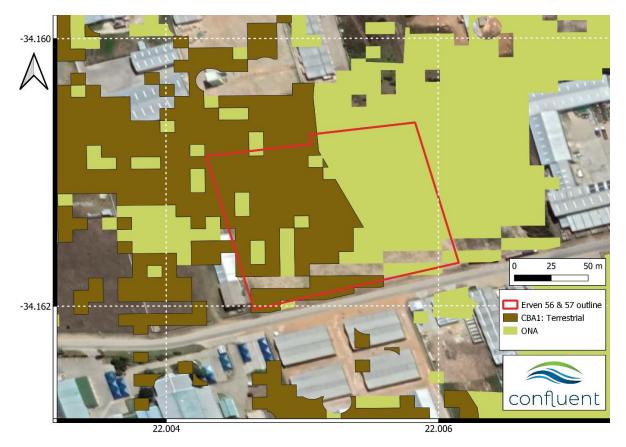


Figure 5: The mapped Western Cape Biodiversity Spatial Plan (WC BSP) categories that have been mapped for the site are terrestrial CBA1 and ONAs.

4.5 Historical Aerial Imagery

The oldest aerial imagery of the site is from 1939, at which time the proposed development site and surrounding landscape seems to have had relatively little anthropogenic influence and disturbance. Soon after (between 1939 and 1963) the area was transformed to agricultural fields, which remained until the 1990's when the first roads and developments of Mossdustria began (Fig. 6). High resolution historical imagery for the area dating back to 1939 can be sourced upon email request from the CD:NGI Geospatial portal, or in person from their offices in Mowbray, Cape Town. Since Mossdustria developments began, the proposed development site and surrounding landscape became invaded by invasive Australian Acacias. The most dominant invasive alien plant (IAP) that was noted in the industrial complex was *Acacia saligna*, and some sections that were invaded by *A. cyclops* (rooikrans). It also seems that due to the secondary IAP invasion and densification, attempts to thin out the IAPs on erven 56 and 57 were made at least three times since 2004 i.e., once between 2004 and 2009, again between 2019 and 2020, and then all vegetation was cleared towards the end of 2022 (Fig. 6 & 7). If the site is left without any intervention for the next few years, it is very likely that Acacia stands surrounding the erven will spread and densify again onto erven 56 and 57, reducing the biodiversity of the site to a near monoculture (Fig. 8).

Figure 6: Historical imagery for the proposed development and wider Mossdustria area (1939 to May 2019). The top row of images are zoomed out to show the general pattern for the surrounding area as well as the proposed development site and represents the oldest imagery available for the area. The bottom row of images were all taken in the 21st century.

Figure 7: The most recent historical imagery for the proposed development site (July 2020 to October 2022).

Figure 8: An image of the northern boundary of the site showing the site currently dominated by graminoids, with a dense *Acacia saligna* stand just north of the recently cleared Erven 56 and 57

4.6 The Project Area of Influence (PAOI)

The outline of the project area of influence (PAOI) is illustrated in Fig. 9 and covers the entire area of the proposed development site. The discussion following is based on this map.

- The total area that the development will occupy (including features like fences, parking and driveways) will be ca. 12 673 m² (or ca. 1.27 ha) over both properties which cover a total of 18 082 m².
- The additional 5409 m² of "open" areas will likely also be transformed for use as additional parking spaces for large trucks.
- This means that the total area covered by the PAOI on Erven 56 & 57 will be the total area of both properties, plus an additional 2m disturbance strip beyond the boundary of the erven. This is because the boundary of these two properties will be subject to negative edge effects due to the development and transformation of the site.

Figure 9: The Project Area of Influence (PAOI) for the proposed development site, illustrated as the primary PAOI features, and a 2m disturbance strip (secondary PAOI) outside of the boundaries of erven.

5. RESULTS: FIELD ASSESSMENT

5.1 Species list and species accumulation curve for the site

A full list of species that were observed on the site as well as a species accumulation curve for the site assessment observations on the 15th of March 2023 are illustrated in Table 2 and Fig. 10 below. A total of 67 species were recorded on the site, of which one was a species of conservation concern (SCC), which is discussed in the next section (5.2) of this report.

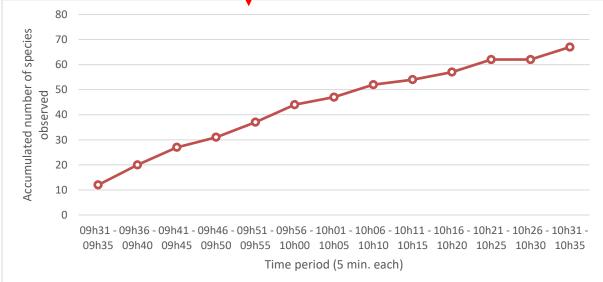


Figure 10: The area on iNat within which observations were noted to improve the understanding of potential SCC for the site and other species present nearby. Observation data in the species accumulation curve on the right show only site assessment observations. Additional plant species observations made by other people are listed in Appendix 10.3.

Table 2: A provisional species list, including all of the species that were recorded on Erven 56 & 57 during the site visit on 15 March 2023. The only SCC on the site is highlighted in green; the rest of the plants that were observed are not threatened.

Scientific name	Common name	Family
Carpobrotus edulis	sea fig	Aizoaceae
Atriplex semibaccata	berry saltbush	Amaranthaceae
Centella asiatica	Gotu Cola	Apiaceae
Foeniculum vulgare	fennel	Apiaceae
Arctotheca prostrata	Prostrate Capeweed	Asteraceae
Athanasia quinquedentata	Fivetooth Kanniedood	Asteraceae
Berkheya rigida	Weed African Thistle	Asteraceae
Bidens pilosa	Hairy Beggarticks	Asteraceae
Cirsium vulgare	Bull Thistle	Asteraceae
Helichrysum	Everlasting-flowers	Asteraceae
Helichrysum luteoalbum	Jersey Cudweed	Asteraceae
Helichrysum odoratissimum	Kooigoed Everlasting	Asteraceae
Helichrysum patulum	Honey Everlasting	Asteraceae
Helminthotheca echioides	bristly oxtongue	Asteraceae
Metalasia acuta	Pointy Blombush	Asteraceae
Nidorella ivifolia	Ivy Vleiweed	Asteraceae
Osteospermum moniliferum	Bietou	Asteraceae
Osteospermum moniliferum moniliferum	Bietou	Asteraceae
Senecio burchellii	Kill Ragwort	Asteraceae
Senecio linifolius	Thread Ragwort	Asteraceae
Sonchus	sow thistles	Asteraceae
Tagetes minuta	wild marigold	Asteraceae
Echium plantagineum	purple viper's-bugloss	Boraginaceae
Rapistrum rugosum	annual bastard cabbage	Brassicaceae
Monopsis unidentata unidentata		Campanulaceae
Gymnosporia buxifolia	Common Spikethorn	Celastraceae
Commelina africana	African Yellow Dayflower	Commelinaceae
Falkia repens	Pink Ear	Convolvulaceae
Bulbostylis		Cyperaceae
Cyperus	flatsadgas	Cyperaceae
Cyperus Cyperus erectus	flatsedges	Cyperaceae
Cyperus erectus Cyperus polystachyos polystachyos	Manyanika Flatsadaa	
	Manyspike Flatsedge	Cyperaceae
Cyperus sphaerospermus Ficinia bulbosa	Deally area Cardona	Cyperaceae
	Bulbous Sedge	Cyperaceae Ebenaceae
Diospyros dichrophylla	Poison Starapple	
Euclea	Gwarries	Ebenaceae
Acacia cyclops	western coastal wattle	Fabaceae
Acacia saligna	golden wreath wattle	Fabaceae
Indigofera nigromontana	Swartberg Indigo	Fabaceae
Medicago truncatula	barrel medick	Fabaceae
Trifolium angustifolium	Narrow-leaved clover	Fabaceae
Pelargonium alchemilloides	Mantle Storksbill	Geraniaceae
Pelargonium capitatum	rose-scented geranium	Geraniaceae
Pelargonium grossularioides	Coconut Geranium	Geraniaceae
Hypoxis hemerocallidea	African potato	Hypoxidaceae
Hermannia flammula	Blazing Dollsrose	Malvaceae
Hermannia lavandulifolia (VU)		Malvaceae
Hermannia saccifera	cumin hermannia	Malvaceae
Hibiscus pusillus	Bladderweed	Malvaceae
Oxalis corniculata	Creeping Woodsorrel	Oxalidaceae
Plantago lanceolata	ribwort plantain	Plantaginaceae
Cenchrus clandestinus	Kikuyu Grass	Poaceae

Cynodon dactylon	Bermuda grass	Poaceae
Eragrostis curvula	African love grass	Poaceae
Eragrostis plana	Fan Love Grass	Poaceae
Megathyrsus maximus	guinea grass	Poaceae
Melinis repens	Natal grass	Poaceae
Paspalum dilatatum	Dallis grass	Poaceae
Paspalum urvillei	Vasey Grass	Poaceae
Poaceae	grasses	Poaceae
Sporobolus africanus	Parramatta Grass	Poaceae
Stenotaphrum secundatum	Saint Augustine grass	Poaceae
Rumex	docks	Polygonaceae
Thesium	Rootthugs	Santalaceae
Selago corymbosa	Stiff Bitterbush	Scrophulariaceae
Datura stramonium	jimsonweed	Solanaceae
Solanum nigrum	Black Nightshade Complex	Solanaceae
Verbena bonariensis	purpletop vervain	Verbenaceae

5.2 Plant species of conservation concern (SCC)

Table 3 below illustrates the various Red List and Orange List categories that SCC can belong to. The Orange List (Victor & Keith, 2005) refers to species that are not on the Red List yet, but that still merit attention to prevent the possibility that they end up on the Red List.

One SCC (on the Red List) was observed on the site, namely *Hermannia lavandulifolia* (Table 4). This species of "dollrose" is a pale grey-green spreading herbaceous shrublet that can grow up to ca. 1 m tall but is more commonly around 30 cm tall. This species is found between Caledon and Plettenberg Bay in the Western Cape only, growing in a variety of renosterveld, fynbos, strandveld, and dune thicket vegetation types. Due to ongoing severe habitat loss due to developments and habitat degradation this species is currently listed as Vulnerable according to SANBI's Red List of South African plants. The approximate occurrence of the species on the site in indicated in the heatmap of Fig. 11, however it is difficult to predict its true distribution on the site due to the fact that flora is only starting to return to the site following the removal of all plants from the site in late 2022. At least five other SCC have been recorded in the landscape surrounding Mossdustria. These species are also listed in Table 4, as their presence on the site cannot be ruled out completely.

Red / Orange list category	Definition	Class	
EX	Extinct	Extinct	
CR	Critically Endangered	Red List	
EN	Endangered	Red List	
VU	Vulnerable	Red List	
NT	Near Threatened	Orange List	
Declining	Declining taxa	Orange List	
Rare	Rare	Red List	
Critically Rare	Only one subpopulation	Red List	
Rare - Sparse	Widely distributed but rare	Red List	
DDD	Data Deficient: well-known but not	Orange List *	
DDD	enough information for assessment		
DDT	Data Deficient: taxonomic problems	Data Deficient	
DDX	Data Deficient: unknown species	Data Deficient	

Table 3: A summary of the IUCN Red Rist categories used for the Red List of South African Plants (SANBI,2020), and adapted Orange List categories (Victor & Keith, 2005).

* Excluding all DDD listed naturalised exotics and invasive species in South Africa

Table 4: The threatened plant species recorded on the site and in the nearby surrounding landscape. Highlighted in green is the species found on the site. Observations made by other people on iNaturalist before the site assessment for the surrounding landscape is available in Appendix 10.3.

Species	SANBI Red List status	Common name	Family	Growth form
Cephalophyllum diversiphyllum	Near Threatened B1ab(ii,iii,iv,v)	Variable starfig	Aizoaceae	Perennial succulent
Trichodiadema occidentale	Vulnerable D2	Ruens Crownfig	Aizoaceae	Perennial succulent
Cullumia carlinoides	Near Threatened B1ab(ii,iii,iv,v)	Limestone Snakethistle	Asteraceae	Perennial
Freesia caryophyllacea	Near Threatened B1ab(i,ii,iii,iv,v)	Fragrant Kammetjie	Iridaceae	Geophyte
Hermannia lavandulifolia	Vulnerable A2c	Dollroses	Malvaceae	Herbaceous perennial
Selago ramosissima	Endangered B1ab(iii)	Bitterbushes	Scrophulariaceae	Herbaceous perennial

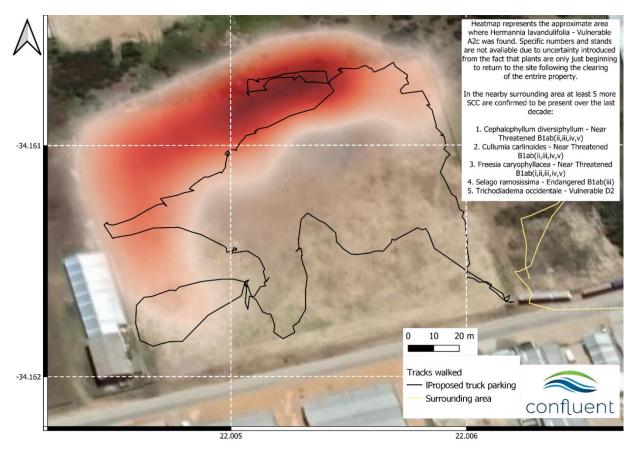


Figure 11: A heatmap showing the approximate locations of *Hermannia lavandulifolia* plants on the proposed development site, as well as the path walked on the site during the site assessment on the 15th of March 2023.

Furthermore, several additional SCC have been recorded nearby the proposed development site by several observers on iNaturalist (Fig. 12 and Table 4). All SCC in Fig. 12 have a high probability of occurrence on the site, despite the fact that they were not observed during the site visit. The probability of occurrence for the SCC listed in the screening tool are discussed in the screening tool section of this report. None of the screening tool report SCC (apart from *Hermannia lavandulifolia*) have a probability of occurrence higher than "medium", and most have a low or very low probability of occurrence.

Figure 12: Photos showing the SCC found on the proposed development site (*Hermannia lavandulifolia*), as well as other SCC recorded on iNaturalist very near the proposed development site (see Appendix 10.3).

5.3 Naturalised exotic and invasive alien plants

In total, seven listed Invasive Alien Plants (IAPs) were recorded on the site during the site visit (Fig. 13). The NEMBA category for the listed invasives was 1b, which is described in BOX 2. However, several other rather invasive species that are not NEMBA or CARA listed were also recorded on the site (Table 5), such as:

- *Atriplex semibaccata* can grow into a dense ground cover that retards fires, and displaces native flora, reducing the biodiversity of sites (Bromilow, 2018).
- *Tagetes minuta* was introduced from South America is a competitive weed that can displace native flora where it grows into dense stands.
- *Oxalis corniculata* is from Europe and can act as a host for various plant rust diseases (Bromilow, 2018).

- Wild radish (*Raphinistrum rugosum*) also originated in Europe and is widespread is Southern Africa. It is a competitive weed that often harbours various insect pests (esp. aphids) and diseases (Bromilow, 2018).
- *Paspalum dilatatum* is originally from South America and is difficult to control once established (Bromilow, 2018). It can displace native vegetation and reduce the biodiversity of a site.
- Table 5:Introduced and invasive plant species that were found on the site. Orange species are NEMBA and/or CARA listed invasive species, and yellow species can displace native vegetation, reducing biodiversity.

Species	Common name	Family	Growth form	NEMBA category	CARA category
Atriplex semibaccata	Berry saltbush	Amaranthaceae	Perennial		
Centella asiatica	Gotu cola	Apiaceae	Herbaceous perennial		
Foeniculum vulgare	Fennel	Apiaceae	Herbaceous perennial		
Cirsium vulgare	Bull thistle	Asteraceae	Perennial	1b	1
Tagetes minuta	Wild marigold	Asteraceae	Herbaceous perennial		
Echium plantagineum	Purple viper's- bugloss	Boraginaceae	Herbaceous Annual/Bienn ial	1b	1
Raphinistrum rugosum	Wild radish /Annual bastard cabbage	Brassicaceae	Annual		
Acacia cyclops	Rooikrans	Fabaceae	Tall shrub	1b	2
Acacia saligna	Golden wreath wattle	Fabaceae	Tall shrub	1b	2
Trifolium angustifolium	Narrow-leaved clover	Fabaceae	Herbacoeus perennial		
Oxalis corniculata	Creeping woodsorrel	Oxalidaceae	Herbaceous		
Plantago lanceolata	Ribwort plantain	Plantaginaceae	Perennial		
Cenchrus clandestinus	Kikuyu grass	Poaceae	Graminoid	1b	
Paspalum dilatatum	Dallis grass	Poaceae	Graminoid		
Datura stramonium	Jimsonweed	Solanaceae	Shrub	1b	1
Verbena bonariensis	Purpletop vervain	Verbenaceae	Perennial	1b	

BOX 2: NEMBA categories for listed invasive alien plants (IAPs)

Category 1b

- Species which must be controlled.
- Property owners and organs of state must control the listed invasive species within their properties.
- If an Invasive Species Management Programme has been developed, a person must control the listed invasive species in accordance with such programme.
- Authorised officials must be permitted to enter properties to monitor, assist with or implement the control of listed species.
- Any Category 2 listed species (where permits are applicable) which fall outside of containment and control, revert to Category 1b and must be controlled.
- Any Category 3 listed species which occur within a Protected Area or Riparian (wetland) revert to Category 1b and must be controlled.
- The Minister may require any person to develop a Category 1b Control Plan for one or more Category 1b species occurring on a property.

Figure 13: Photos of the NEMBA and/or CARA listed invasive species that were observed on the site. All photos were taken by Bianke Fouche during the site assessment.

6. SITE ECOLOGICAL IMPORTANCE (SEI)

6.1 SEI assessment

- The proposed development in Mossdustria covering Erven 56 & 57 is mapped as a CBA1 and ONA area by the WC BSP.
- Many of the species that were regenerating on the site are native to the North Langeberg Sandstone Fynbos, which is the vegetation type mapped for the site according to the 2018 updated National Vegetation Map of South Africa.
- Most of the site is currently dominated by graminoids, with some indigenous and endemic species scattered in between.
- The botanical sensitivity of the site, as identified by the protocols, is High because of the presence of *Hermannia lavandulifolia*. The SEI calculations for the ground truthed vegetation of site is not the same as the protocol defined sensitivity.
- Given the location of the site, and the past disturbance and infestation by IAPs, the receptor resilience for the site is high, meaning it will **likely remain in a modified state and has little potential for rehabilitation**.
- Furthermore, the land is in the middle of an industrial complex and has little functional integrity as it is already isolated from the larger natural areas outside of Mossdustria.
- *H. lavandulifolia* is a very common and widespread SCC, listed under the IUCN criterion A only, which means that this development will have a insignificant negative effect on the conservation targets of this species. This SCC would likely have been lost from the site over time, even if no development took place, because it is
 - in the middle of an industrial area, and
 - because even though it seems to thrive in slight disturbance, it will not persist in a modified / disturbed area indefinitely.
- The edges of the site have a very low SEI, as these areas are prone to reinvasion by IAPs and experience other negative edge effects, while the SEI for the rest of the site is considered low (see Fig 14 and the reasons used for the SEI calculation in Table 6).
- The interpretation of the SEI result is given in Table 7, i.e., that the habitat will struggle to recover and that activities of a medium to high impact are acceptable on the site.
- Methods for determining the SEI are in the Appendix 10.1.

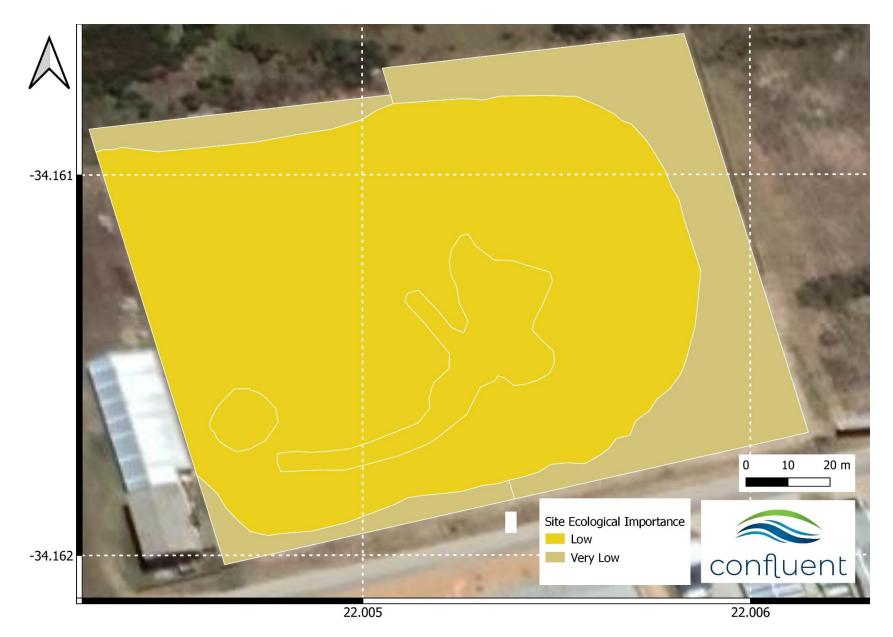


Figure 14: A visual representation of the areas where different SEI categories have been mapped, based on the vegetation observed on the site.

Table 6: The evaluation of the SEI for the various vegetation communities and habitats present within, and surrounding the PAOI.

Vegetation type	Conservation Importance (CI)	Functional Integrity (FI)	Receptor Resilience (RR)	Site Ecological Importance (SEI)
Recovering	Medium	Low	Medium	Low
disturbed bushy	Confirmed occurrence of VU Hermannia	Small (>1 ha but <5 ha) area, with	Species that have a moderate likelihood of	BI - Low
elements	lavandulifolia that is listed under criterion	very low habitat connectivity and	returning to a site once the disturbance or	RR – Medium
	A. > 50% of receptor with natural habitat	several minor and major current	impact has been removed.	
	with poitential to support SCC.	negative ecological impacts.		
Recovering	Medium	Low	Medium	Low
disturbed North	Confirmed occurrence of VU Hermannia	Small (>1 ha but <5 ha) area, with	Species that have a moderate likelihood of	BI - Low
Langeberg	lavandulifolia that is listed under criterion	very low habitat connectivity and	returning to a site once the disturbance or	RR – Medium
Sandstone Fynbos	A. > 50% of receptor with natural habitat	several minor and major current	impact has been removed.	
	with poitential to support SCC.	negative ecological impacts.		
Vegetation at risk	Medium	Low	High	Very Low
of "First wave"	Confirmed occurrence of VU Hermannia	Small (>1 ha but <5 ha) area, with	Species that have a high likelihood of	BI - Low
Acacia invasion	lavandulifolia that is listed under criterion	very low habitat connectivity and	remaining at a site even when a disturbance	RR – High
	A. > 50% of receptor with natural habitat	several minor and major current	or impact is occurring, and have a high	
	with poitential to support SCC.	negative ecological impacts.	likelihood of returning once a disturbance	
			or impact has been removed.	

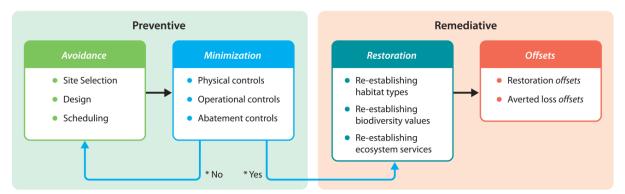
Table 7: Mitigation measures for the site based on the SEI ratings of the various vegetation types present on the site.

Site Ecologic Importance (SEI	
Low	Minimisation and restoration mitigation – development activities of medium to high impact acceptable followed by appropriate restoration activities.
Very Low	Minimisation mitigation – development activities of medium to high impact acceptable and restoration activities may not be required.

7. SITE SENSITIVITY VERIFICATION

7.1 Terrestrial Biodiversity

The terrestrial biodiversity theme for the site has a confirmed Low sensitivity, despite the site having areas that are mapped as a CBA1 areas. The vegetation of the site is not in a natural condition, and has been disturbed multiple times in the past with invasive plants tending to dominate the secondary succession on the site (mostly *Acacia longifolia* and *Acacia cyclops*). Erven 56 and 57 are located in the middle an industrial complex, and do not meet the definition for being CBA1 areas. Furthermore, the site contains no sensitive freshwater or aquatic features. This means that although the site triggered FEPA as a reason for having very high terrestrial biodiversity sensitivity, the proposed development will not affect or interfere with the FEPA objectives for the broader landscape and catchment.


7.2 Botanical diversity

The terrestrial plant theme sensitivity of the site has a confirmed High sensitivity and is not Medium as stated in the screening tool. The "Protocol for the specialist assessment and minimum report content requirements for Environmental Impacts on terrestrial plant species" describes a high sensitivity as:

- Confirmed habitat for SCC.
- SCC listed on the IUCN Red List of Threatened Species or South Africa's National Red List website as CR, EN, or VU.

8. IMPACT ASSESSMENT

The mitigation of potential impacts associated with the development are ranked according to the mitigation hierarchy, which has four distinct categories of mitigation measures (Fig. 15). These can be divided into preventative and remediative mitigation measures. The mitigation hierarchy must be kept in mind during all of the stages of the project lifespan to ensure that the best mitigation measures are put in place for any given activity (Ekstrom et al., 2015). Methods used for the impact assessment are provided in the Appendix 10.2. Depending on the result, impacts are either negligible, minor, moderate, or major, and the impact can either be positive or negative.

* Can potential impacts be managed adequately through remediative measures?

Figure 15: The iterative process of avoiding and minimising the predicted impacts on biodiversity and ecosystem services, as described in (Ekstrom et al., 2015).

8.1 Layout and Design Phase

8.1.1 Recommendation for staff parking spaces.

The driveways and parking areas **for smaller vehicles** (**not trucks**) could be designed with open pavers (Fig. 16) planted with native graminoids like buffalo grass (*Stenotaphrum secundatum*), quick grass (*Cynodon dactylon*), restios, or sedges. Open pacers should be used instead of impermeable material to allow for more water infiltration which will reduce runoff, and to promote the presence of some native species on the site. There are a number of nearby indigenous nurseries that can be contacted to aid in the planning for using open pavers optimally.

Figure 16: An illustration of open pavers that can be incorporated into the design of this project for staff parking areas. This is not appropriate for truck parking areas on the site.

8.1.2 Recommendation to avoid non-native species planted on the site

Gardening and any landscaping for the site must be done with species that are native to the area. Any landscaping should be done with someone that has experience in planning indigenous gardens.

8.2 Construction Phase

An Environmental Control Officer (ECO) must be appointed for the duration of the construction phase and should check on the site at least once a week, as well as after rainfall events. Generic impacts associated with the layout provided are considered.

8.2.1 Impact of habitat loss and degradation

Description: The natural habitat of the proposed development site has already been stripped and cleared completely in late 2022. Some vegetation is returning to the site, but most of it will be lost again during the construction phase of the proposed development. Where undisturbed areas remain, bad planning and execution may lead to construction material and equipment smothering vegetation on the site outside of the PAOI. The impact assessment and scenarios with and without mitigation are illustrated in Table 8. Images of some of the proposed mitigation measures listed are illustrated in Figs. 17 to 19. Mismanagement of construction materials on the site can cause negative impacts to the terrestrial biodiversity of the site and surrounding environment, and this should not happen.

Consequences associated with this impact:

- 1. Fragmentation of habitats and affected species populations.
- 2. A general loss of habitat (especially since this site was mapped and planned as part of a CBA1 area).
- 3. A loss of variation within sensitive habitats due to fragmentation and the loss of habitat patches.
- 4. A shift towards a negative change in the conservation status of the habitat affected by the development.
- 5. Increased vulnerability of remaining habitat portions of Mossdustria and elsewhere.
- 6. A negative disturbance to the processes that are necessary to maintain biodiversity and ecosystem goods and services.
- 7. Potential health and safety hazards on the site and in the surrounding environment, and the creation of novel habitat that indigenous species cannot survive in, but where exotics and IAPs thrive in. This results from disorganised materials ending up in wrong places and mixing between materials that should not mix. For example, piles of soil from the site mixing with sand sourced elsewhere could lead to an increased likelihood or introducing more IAPs.
- 8. Water waste and other construction materials washing into areas where it causes unnecessary erosion, clean-up activities, and therefore causes damage to the environment.

Table 8: Construction	phase im	pact - Habitat	loss and degradation
-----------------------	----------	----------------	----------------------

Mitigatability	High	Mitigation exists and will cons	iderably reduc	ce the significance of impacts
Potential mitigation	site	earing of vegetation outside of the e must be planned and designed as for equipment and material se the site near site offices.	l before const	ruction starts (Fig. 17), so that
	2. On	going monitoring and clearing o	f IAPs on the	site.
	risl allo	tterials used during construction k of further introductions of ne owed on the site. All material wa a waste disposal facility.	ew IAPs. No	waste dumping or burning is
		equate ablution facilities that are th at least one toilet per ten const		aned and maintained on the site,
		eas for resting and lunch is to be a national to be a nation waste disposal bins that are		
	con imp	ncrete and cement mixing is not ncrete and cement occurs, the permeable material to prevent a l existing road.	area must be	bunded or surrounded by an
		ockpiles of materials and soil movering, which must also be bund to on the site (Fig 18). This will pro- ntaminating the substrate of the sol organisms.	led (e.g., sand prevent the m	bags) when the piles are not in aterial from washing away and
	stra	e use of filled sandbags can redu ategic areas where water flow is g. 19).		
Assessment	1	Without mitigation		
issessment		without initigation		With mitigation
Nature	Negative	-	Negative	-
		Impact will last between 1 and 5 years	Negative Short term	With mitigation Impact will last between 1 and 5 years
Nature	Negative	Impact will last between 1	-	Impact will last between 1
Nature Duration	Negative Short term	Impact will last between 1 and 5 years Limited to the site and its immediate surroundings	Short term	Impact will last between 1 and 5 years Limited to the site and its immediate surroundings
Nature Duration Extent	Negative Short term Limited	Impact will last between 1 and 5 years Limited to the site and its immediate surroundings (edge effects) Natural and/ or social functions and/ or processes	Short term Limited	Impact will last between 1 and 5 years Limited to the site and its immediate surroundings (edge effects) Natural and/ or social functions and/ or processes
Nature Duration Extent Intensity	Negative Short term Limited Very high Certain /	Impact will last between 1 and 5 years Limited to the site and its immediate surroundings (edge effects) Natural and/ or social functions and/ or processes are majorly altered There are sound scientific reasons to expect that the	Short term Limited Very High Certain /	Impact will last between 1 and 5 years Limited to the site and its immediate surroundings (edge effects) Natural and/ or social functions and/ or processes are majorly altered There are sound scientific reasons to expect that the
Nature Duration Extent Intensity Probability	Negative Short term Limited Very high Certain / definite	Impact will last between 1 and 5 years Limited to the site and its immediate surroundings (edge effects) Natural and/ or social functions and/ or processes are majorly altered There are sound scientific reasons to expect that the impact will definitely occur Substantive supportive data exists to verify the	Short term Limited Very High Certain / definite	Impact will last between 1 and 5 years Limited to the site and its immediate surroundings (edge effects) Natural and/ or social functions and/ or processes are majorly altered There are sound scientific reasons to expect that the impact will definitely occur Substantive supportive data exists to verify the
Nature Duration Extent Intensity Probability Confidence	Negative Short term Limited Very high Certain / definite High	Impact will last between 1 and 5 years Limited to the site and its immediate surroundings (edge effects) Natural and/ or social functions and/ or processes are majorly altered There are sound scientific reasons to expect that the impact will definitely occur Substantive supportive data exists to verify the assessment The affected environment will not be able to recover from the impact -	Short term Limited Very High Certain / definite High	Impact will last between 1 and 5 years Limited to the site and its immediate surroundings (edge effects) Natural and/ or social functions and/ or processes are majorly altered There are sound scientific reasons to expect that the impact will definitely occur Substantive supportive data exists to verify the assessment The affected environment will not be able to recover from the impact -
Nature Duration Extent Intensity Probability Confidence Reversibility Resource	NegativeShort termLimitedVery highCertain / definiteHighLowMedium	Impact will last between 1 and 5 years Limited to the site and its immediate surroundings (edge effects) Natural and/ or social functions and/ or processes are majorly altered There are sound scientific reasons to expect that the impact will definitely occur Substantive supportive data exists to verify the assessment The affected environment will not be able to recover from the impact - permanently modified The resource is damaged irreparably but is represented	Short term Limited Very High Certain / definite High Low Medium	Impact will last between 1 and 5 years Limited to the site and its immediate surroundings (edge effects) Natural and/ or social functions and/ or processes are majorly altered There are sound scientific reasons to expect that the impact will definitely occur Substantive supportive data exists to verify the assessment The affected environment will not be able to recover from the impact - permanently modified The resource is damaged irreparably but is represented

Figure 17: Examples of construction fencing that can be used on the site.

Figure 18: An example of a protected stockpile (imagfrom stormwaterhawaii.com).

Figure 19: Examples of silt socks placed perpendicular to the flow of water. These reduce the force of water flow, erosion, and can prevent unwanted sedimentation on the site.

8.2.2 Impact of construction on SCC

Description: The natural habitat of the proposed development site has already been stripped and cleared completely in late 2022. *Hermannia lavandulifolia*, a VU SCC, was recorded as a one of the species in the early successional stages of vegetation regrowth on the site (luckily it seems to thrive in light disturbance). However, these plants will be lost during the construction phase if mitigation measures are not in place to protect this SCC, and to promote a shift to indigenous horticulture and gardening in the Mossel Bay area. SANBI describes *Hermannia* spp. in general as follows :

"Hermannias have great horticultural potential, but since they are generally associated with arid areas, the perception is that they only succeed in dry areas. However, it is well known that certain xerophytes thrive if given water with good drainage, so the group of plants is worth cultivating and testing. In the current times of climate change and water scarceness, it is important to cultivate these plants which are naturally adapted to less water. With the higher emphasis on water-wise gardening, plants with a wider ecological tolerance will assume increased importance in horticulture. Many species of Hermannia are cultivated in indigenous nurseries, as they have such excellent horticultural potential. However, they are still unknown to many gardeners, and need more publicity to increase their popularity." ~ (Sachse, 2007)

The site is especially prone to re-invasion by *Acacia saligna*, which over time could result in the reduction and eventual eradication of *H. lavandulifolia* and other more sensitive and less widespread SCC that might be present on the site, even if the site remains in the state that is currently is in. The impact assessment and scenarios with and without mitigation are illustrated in Table 9.

Consequences associated with this impact:

- 1. Fragmentation affects SCC sub-populations. This consequence here is minimal as the erven already form part of a larger disturbed area in Mossdustria. It is really the surrounding near-natural landscape with multiple confirmed SCC that is fragmented by Mossdustria and other similar large developments in the area.
- 2. Reduction in the extent of occurrence of SCC.
- 3. A general loss of suitable habitat for SCC
- 4. A loss of genetic variation within affected SCC stands.
- 5. A shift towards a negative change in the conservation status of the SCC and other indigenous species affected by the development. Even if this effect is negligible given the size of the erven to be developed in relation to the widespread and common *H. lavandulifolia*, the combined effect of this development and the many other developments in the Mossel Bay area and beyond will negatively affect the conservation status of species.
- 6. A risk of re-invasion of the site by acacias and the consequent permanent loss of *H*. *lavandulifolia* from even the most minor remaining open spaces on the site.

Table 9: Construction	phase impact - Habitat	loss and degradation
rubic). Construction	phuse impuet musicut	1055 and degradation

Mitigatability	High	Mitigation exists and will co	onsiderably re	educe the significance of impacts	
Potential mitigation	rel in	levant indigenous flora horticu	ken, with rescued plants being in the care of a lturalist. The horticulturalist for the site must be e permit from CapeNature to move, sell, buy, ll threatened flora.		
	2. Rescued plants are not to be planted in more natural vegetation surr Mossdustria, rather they can be kept and cultivated as a reserve for reve in other projects where open spaces need rehabilitation with plants indige the area.				
	fei		s where nece	struction netting and/or appropriate ssary. This will prevent impacts on area.	
	to the	minimise the risk of further i e site, and especially the areas	ntroductions surrounding		
	po		ort additiona	t the SCC found on the site and the 1 SCC. The brief should include areas on the site	
Assessment	Without m		With mitig		
Nature	Negative		Negative		
Duration	Short term	Impact will last between 1 and 5 years	Short term	Impact will last between 1 and 5 years	
Extent	Limited	Limited to the site and its immediate surroundings	Limited	Limited to the site and its immediate surroundings	
Intensity	Very high	Natural and/ or social functions and/ or processes are majorly altered	Low	Natural and/ or social functions and/ or processes are somewhat altered	
Probability	Certain / definite	There are sound scientific reasons to expect that the impact will definitely occur	Certain / definite	There are sound scientific reasons to expect that the impact will definitely occur	
Confidence	High	Substantive supportive data exists to verify the assessment	High	Substantive supportive data exists to verify the assessment	
Reversibility	Low	The affected environment will not be able to recover from the impact - permanently modified	Low	The affected environment will not be able to recover from the impact - permanently modified	
Resource irreplaceability	Medium	The resource is damaged irreparably but is represented elsewhere	Medium	The resource is damaged irreparably but is represented elsewhere	
Significance	Moderate	- negative	Minor - ne	gative	

8.2.3 Impact of construction vehicles on sensitive habitat surrounding the development site

Description: Construction vehicles may cause pollution and damage to the environment, habitat, and vegetation present in the landscape around the proposed development. Impacts that arise from construction vehicles are fairly straightforward to mitigate and reduce to a negligible negative impact. The impact assessment is in Table 10.

Consequences associated with this impact:

- 1. Unnecessary creation of muddy areas, substrate damage, and pollution of the environment.
- 2. Pollution of water, and accumulation of toxic materials in natural and near-natural areas.
- 3. An overall reduction in biodiversity.

Mitigatability	Medium	Mitigation exists and will	notably reduce significance of impacts		
Potential mitigation	off are	eas that fall outside of the	the site, durable materials should be used to fence PAOI disturbance strip and clearly show where nd where parking areas are on the site.		
				ed into the ground using wooden pegs, build be placed strategically on the site.	
	truck			nearby roads should be put up to guide iding divers getting lost and causing	
		er reports must be checked ing a lot of water use on the s		void heavy machinery and activities iny weather.	
	5. Follow	ving a rainfall event, all cons	truction on th	ne site must cease temporarily.	
		ags should be available on ntal spills can be contained a		re vehicles are refuelled so that any uickly.	
	each d			r leaks on a daily basis at the start of llowed to operate on the site until they	
		perating earth moving mach erate outside of the PAOI.	inery need to	be informed that these vehicles may	
Assessment		hout mitigation	With mitigation		
Nature	Negative		Negative		
Duration	Short term	Impact will last between 1 and 5 years	Short term	Impact will last between 1 and 5 years	
Extent	Very limited	Limited to specific isolated parts of the site	Very limited	Limited to specific isolated parts of the site	
Intensity	High	Natural and/ or social functions and/ or processes are notably altered	Low	Natural and/ or social functions and/ or processes are somewhat altered	
Probability	Almost certain / Highly probable	It is most likely that the impact will occur	Probable	The impact has occurred here or elsewhere and could therefore occur	
Confidence	High	Substantive supportive data exists to verify the assessment	High	Substantive supportive data exists to verify the assessment	
Reversibility	Medium	The affected environment will only recover from the impact with significant intervention	Medium	The affected environment will only recover from the impact with significant intervention	
Resource irreplaceabili ty	Medium	The resource is damaged irreparably but is represented elsewhere	Low	The resource is not damaged irreparably or is not scarce	
Significance	Μ	inor - negative		Negligible - negative	

Table 10: Construction phase impact - Vehicles impact on sensitive habitat surrounding the development site.

8.3 Concluding construction works.

The conclusion of any project is an essential, but often overlooked aspect of projects. This relates primarily to the cleaning up of the site once construction has concluded. **All mitigation proposed above are only meaningful if construction is properly concluded**. The site must be cleared of all waste material, rubble, and debris associated with the construction phase at regular intervals during, and at the conclusion of the construction phase. Drainage structures must be checked to ensure that there are no blockages or pollution that is blocking the free flow of water. This will prevent erosion during and after the construction phase.

8.4 **Operational Phase**

Following the information given for this project, **there will be no open areas left on the site** that will have the potential to recover after the construction phase of the project. This means that there are no operational phase impacts associated with the proposed activity, as there will be no habitat or SCC remaining on the site. Furthermore, the natural vegetation of the site and Mossdustria is fynbos, which is a fire-driven ecosystem, and fire-return intervals in Mossdustria is non-existent. In small habitat parches that are invaded by IAPs (as is the case in most of Mossdustria), edge effects are exacerbated and natural vegetation inevitably disappears (Gill et al., 2014). Therefore, a few recommendations for the operational phase of the project are listed below to ensure that negative impacts will extend beyond the permanent footprint of the proposed development and Mossdustria into the more natural surrounding landscape:

- 1. Regular effort must be made to keep the site clear of all IAPs, and this is also a requirement by law.
- 2. Planting of grass and lawns must be avoided on the site apart from in the open pavers that will be used as parking areas for staff on the site. Here only indigenous grass may be planted, and kikuyu grass (*Cenchrus clandestinus*), a listed invasive species, is banned.
- 3. Dumping of garden refuse or leaving stacks of cleared IAP slash in natural and near-natural vegetation is not allowed. Dumping may only occur in designated areas.
- 4. General cleanliness and order must be maintained on the site to avoid accidental impacts to the environment. Ensure that there are sufficient bins available on the site, both inside of the offices and on the outside.
- 5. Regular maintenance of the diesel tanks on the site.
- 6. Trained staff must manage the filling station and washing bay on the site to avoid pollutants running off into the environment.

8.5 Cumulative impacts

The proposed development forms part of the wider Mossdustria complex, which is an industrial area – The existing hard surfaces and IAP infestations in the Mossdustria complex as a whole can lead to an accumulation of negative effects for the entire Mossdustria ass well and the surrounding landscape. Mitigation of negative impacts on the proposed development site may not have been done or considered in areas adjacent to the Erven 56 and 57, and therefore the proposed development will be different from the 'development as usual' that likely was the case for other properties in the complex. Following the proposed mitigation measures laid out as part of the impact assessment, the project will reduce the cumulative negative impacts for the area.

9. CONCLUSIONS

Erven 56 and 57 in Mossdustria is mapped as North Langeberg Sandstone Fynbos, which is not listed as a threatened ecosystem. Most of the proposed development site is transformed and represents a disturbed vegetation type with some fynbos elements remaining. Taking the location of the site into account, i.e., that it is in the middle of an industrial area, and that IAP invasions are present in remaining open spaces of Mossdustria (mainly *Acacia saligna* and *A. cyclops*), the study area has a low conservation importance and a low and very low SEI. However, *Hermannia lavandulifolia* (VU) was found during the site assessment, and numerous other threatened or near threatened species have been observed very close to the Mossdustria complex in the surrounding mostly natural landscape. These species are discussed in section 5.1. *Hermannia lavandulifolia* is a common species that frequently occurs in areas that have previously been disturbed, especially when thicket or fynbos has been removed. The loss of this species on the site has a negligible impact on the overall status of the species.

This means that although the site has a low SEI, indigenous vegetation of the wider mostly natural landscape within which the Mossdustria complex is located is anticipated to have a high sensitivity and conservation importance. If the development complies with the mitigation measures proposed in the impact assessment of this report, then the development of the entirety of the two properties would be acceptable. However, the development can only be approved if an IAP management plan for Mossdustria is in place. The vegetation on the site at present has a low conservation value, and that is unlikely to change as the site is in the middle of an industrial complex.

10. REFERENCES

Bromilow, C. (2018). Problem Plants and Alien Weeds of Southern Africa (4th ed.). Brizia Publications.

- CapeNature. (2017). An overview of the Western Cape Biodiversity Spatial Plan. https://www.capenature.co.za/wp-content/uploads/2019/10/A-Summary-Overview-of-the-Biodiversity-Spatial-Plan_web.pdf
- Cowling, R. M., Knight, A. T., Privett, S. D. J., & Sharma, G. (2010). Invest in opportunity, not inventory of hotspots. In *Conservation Biology* (Vol. 24, Issue 2). https://doi.org/10.1111/j.1523-1739.2009.01342.x
- Dayaram, A., Harris, L. R., Grobler, B. A., Van Der Merwe, S., Rebelo, A. G., Powrie, L. W., Vlok, J. H. J., Desmet, P. G., Qabaqaba, M., Hlahane, K. M., & Skowno, A. L. (2019). Vegetation map of South Africa, Lesotho and Swaziland 2018: A description of changes since 2006. *Bothalia*, 49(1). https://doi.org/10.4102/ABC.V49I1.2452
- de Villiers, C., Holmes, P., Rebelo, T., Helme, N., Brown, D.-E., Clark, B., Milton, S., Dean, W. R., Brownlie, S., Snaddon, K., Day, L., Ollis, D., Job, N., Dorse, C., Wood, J., Harrison, J., Palmer, G., Cadman, M., Maree, K., ... Driver, A. (2016). *Ecosystem Guidelines for Environmental Assessment in the Western Cape* (M. Cadman, Ed.; 2nd ed.). Fynbos Forum.
- Ekstrom, J., Bennun, L., & Mitchell, R. (2015). A cross-sector guide for implementing the Mitigation *Hierarchy*.
- Garrard, G. E., Bekessy, S. A., McCarthy, M. A., & Wintle, B. A. (2008). When have we looked hard enough? A novel method for setting minimum survey effort protocols for flora surveys. *Austral Ecology*, *33*(8), 986–998. https://doi.org/10.1111/J.1442-9993.2008.01869.X
- Gill, A. M., Sharples, J., & Johnstone, G. (2014). Edge effects on between-fire interval in landscape fragments such as fire-prone terrestrial conservation reserves. *Biological Conservation*, 169, 54– 59. https://doi.org/10.1016/J.BIOCON.2013.10.012
- Mucina, L., & Rutherford, M. C. (2006). The Vegetation of South Africa, Lesotho and Swaziland. In *The vegetation of South Africa, Lesotho and Swaziland* (Issue 15). Strelitzia. https://kirstenboschbookshop.co.za/product/vegetation-of-south-africa-lesotho-and-swaziland/
- NEM:BA Act, 2004 (Act no. 10 of 2004). (2022). *The Revised National List of Ecosystems that are Threatened and in Need of Protection.* www.gpwonline.co.za
- Pool-Sandvliet, R., Duffel-Canham, A., Pence, G., & Smart, R. (2017). Western Cape Biodiversity Spatial Plan Handbook.
- Privett, S. D. J., Cowling, R. M., & Taylor, H. C. (2001). Thirty years of change in the fynbos vegetation of the Cape of Good Hope Nature Reserve, South Africa. *Bothalia*, 31(1), 99–115. https://doi.org/10.4102/abc.v31i1.509
- Sachse, B. (2007, December). Hermannia. SANBI: National Herbarium, Pretoria.
- SANBI. (2020). Red List of Southern African Plants. http://redlist.sanbi.org/stats.php
- Skowno, A. L., Poole, C. J., Raimondo, D. C., Sink, K. J., van Deventer, H., van Niekerk, L., Harris, L. R., Smith-Adao, L. B., Tolley, K. A., Zengeya, T. A., Foden, W. B., Midgley, G. F., Driver,

A., Adams, J. B., Adams, R., da Silva, J. M., Fizzotti, B., Jansen van Vuuren, B., Kelly, C., ... Whitehead, T. O. (2018). *National Biodiversity Assessment 2018: The status of South Africa's ecosystems and biodiversity*.

- Verburgt, L., McCleland, W., McKenzie, D., Laurence, S., Niemand, L., & Raimondo, D. (2020). Species Environmental Assessment Guideline: Guidelines for the implementation of the Terrestrial Flora (3c) & Terrestrial Fauna (3d) Species Protocols for environmental impact assessments in South Africa. SANBI. http://opus.sanbi.org;80/jspui/handle/20.500.12143/6922
- Victor, J. E., & Keith, M. (2005). Orange List The Orange List: a safety net for biodiversity in South Africa. South African Journal of Science, 100, 139–141.
- Wintle, B. A., Walshe, T. v., Parris, K. M., & Mccarthy, M. A. (2012). Designing occupancy surveys and interpreting non-detection when observations are imperfect. *Diversity and Distributions*, 18(4), 417–424. https://doi.org/10.1111/J.1472-4642.2011.00874.X

APPENDIX

10.1 Site Ecological Importance (SEI) methods

The site ecological importance (SEI) assessment is a function of biodiversity importance (BI) and receptor resilience (RR), which is defined as:

"The intrinsic capacity of the receptor (i.e., habitat type in question) to resist major damage from disturbance and/or to recover to its original state with limited or no human intervention."

The function is as follows: SEI = BI + RR. BI is a function of conservation importance (CI) and habitat functional integrity (FI), so that BI = CI + FI. The definition of CI given by the Species Environmental Assessment Guideline of 2022 is:

"The importance of a site for supporting biodiversity features of conservation concern present, e.g., populations of IUCN threatened and Near Threatened species (CR, EN, VU and NT), Rare species, range-restricted species, globally significant populations of congregatory species, and areas of threatened ecosystem types, through predominantly natural processes."

Most features included in CI are provided by the screening tool but needs to be evaluated at a finer scale from the field work assessment. FI is defined as:

"A measure of the ecological condition of the impact receptor as determined by its remaining intact and functional area, its connectivity to other natural areas and the degree of current persistent ecological impacts."

The criteria for defining RR, CI and FI are provided in the Species Environmental Assessment Guidelines of 2022. BI can be derived from a simple matrix of CI and FI, as illustrated in Table 11 below.

 Table 11: The matrix that defines the biodiversity importance (BI) of a given habitat type, as identified from a desktop and field assessment.

Bio	odiversity	Conservation Importance				
Im	portance	Very High	High	Medium	Low	Very Low
ц Г	Very High	Very High	Very High	High	Medium	Low

High	Very High	High	Medium	Medium	Low
Medium	High	Medium	Medium	Low	Very Low
Low	Medium	Medium	Low	Low	Very Low
Very Low	Medium	Low	Very Low	Very Low	Very Low

SEI can then be derived from a second matrix, as depicted in Table 12. SEI is specific to the proposed development and can therefore only be compared between alternative layouts for the same proposed development, but not between developments.

 Table 12: The matrix that defines the site ecological importance (SEI) of a given habitat type, as identified from a desktop and field assessment.

Site	Ecological	Biodiversity Importance				
Im	portance	Very High High Medium Low Very Lo				Very Low
	Very High	Very High	Very High	High	Medium	Low
tor	High	Very High	Very High	High	Medium	Very Low
eceptor esilience	Medium	Very High	High	Medium	Low	Very Low
Rec Resi	Low	High	Medium	Low	Very Low	Very Low
	Very Low	Medium	Low	Very Low	Very Low	Very Low

10.2 Impact assessment methods

Individual impacts for the construction and operational phase were identified and rated according to criteria which include their intensity, duration and extent. The ratings were then used to calculate the consequence of the impact which can be either negative or positive as follows:

Consequence = type x (intensity + duration + extent)

Where type is either negative (i.e. -1) or positive (i.e. 1). The significance of the impact was then calculated by applying the probability of occurrence to the consequence as follows:

Significance = *consequence x probability*

The criteria and their associated ratings are shown in Table 13.

Table 13: Categorical descriptions for impacts and their associated ratings

Rating	Intensity	Duration	Extent	Probability
1	Negligible	Immediate	Very limited	Highly unlikely
2	Very low	Brief	Limited	Rare
3	Low	Short term	Local	Unlikely
4	Moderate	Medium term	Municipal area	Probably
5	High	Long term	Regional	Likely
6	Very high	Ongoing	National	Almost certain
7	Extremely high	Permanent	International	Certain

Categories assigned to the calculated significance ratings are presented in Table 14.

Table 14: Value ranges for significance ratings, where (-) indicates a negative impact and (+) indicates a positive impact

Significance Rating	Range
---------------------	-------

Major (-)	-147	-109
Moderate (-)	-108	-73
Minor (-)	-72	-36
Negligible (-)	-35	-1
Neutral	0	0
Negligible (+)	1	35
Minor (+)	36	72
Moderate (+)	73	108
Major (+)	109	147

Each impact was considered from the perspective of whether losses or gains would be irreversible or result in the irreplaceable loss of biodiversity of ecosystem services. The level of confidence was also determined and rated as low, medium or high (Table 15).

Rating	Reversibility	Irreplaceability	Confidence
Low	Permanent modification, no	No irreparable damage and	Judgement based on
Low	recovery possible.	the resource isn't scarce.	intuition.
Medium	Recovery possible with	Irreparable damage but is	Based on common sense
Medium	significant intervention.	represented elsewhere.	and general knowledge
High	Recovery likely.	Irreparable damage and is	Substantial data supports
mgn	Recovery likely.	not represented elsewhere.	the assessment

10.3 Species lists.

Table 16 shows observations of plant species outside of the proposed development site by different observers on iNaturalist in the past. It is clear that there are many SCC and orange listed species present in the landscape surrounding Mossdustria. Observations

Table 16: Observations made by various iNaturalist users of plant species in the environment near Erven 56 and57 of Mossductria, within the area defined in Fig. 10.

Date	iNat observer	Species	Common name	Family
2021/11/23	Felix Riegel	Arctotis pinnatifida		Asteraceae
2021/11/23	Felix Riegel	Aspalathus	Aspalathuses	Fabaceae
2021/11/23	Felix Riegel	Aspalathus submissa		Fabaceae
2021/11/23	Felix Riegel	Athanasia	Kanniedoods	Asteraceae
2021/11/23	Felix Riegel	Bobartia	Rushirises	Iridaceae
2021/11/23	Felix Riegel	Crassula subulata	Bihair Stonecrop	Crassulaceae
2021/11/23	Felix Riegel	Erica discolor	Discolorous Heath	Ericaceae
2021/11/23	Felix Riegel	Hermannia lavandulifolia		Malvaceae
2021/11/23	Felix Riegel	Moraea unguiculata	White Uintjie	Iridaceae
2021/11/23	Felix Riegel	Satyrium membranaceum	Membrane Satyre	Orchidaceae
2021/11/23	Felix Riegel	Selago ramosissima		Scrophulariaceae
2021/11/23	Felix Riegel	Senecio purpureus	Purple Ragwort	Asteraceae
2020/06/21	Gerrie	Eriospermum sp.	Woolseeds	Asparagaceae
2022/08/15	Jakub Jilemick	Cephalophyllum sp.	Starfigs	Aizoaceae
2020/08/20	Jenny Potgieter	Acrodon bellidiflorus	Common Tiptoothfig	Aizoaceae
2020/08/20	Jenny Potgieter	Arctotis acaulis	Flat African Daisy	Asteraceae
2020/08/20	Jenny Potgieter	Gazania sp.	Treasure Flowers	Asteraceae
2020/08/20	Jenny Potgieter	Gladiolus mutabilis	Brownies	Iridaceae
2020/08/20	Jenny Potgieter	Helichrysum teretifolium	Needle Everlasting	Asteraceae
2020/08/20	Jenny Potgieter	Monsonia emarginata	Monsonia	Geraniaceae

2022/03/20	Karen Eichholz	Commelina africana	African Yellow Dayflower	Commelinaceae					
2022/03/20	Karen Eichholz	Hypoxis hemerocallidea	African potato	Hypoxidaceae					
2023/02/11	Kevin Koen	Arctotis pinnatifida	*	Asteraceae					
2022/05/20	Kevin Koen	Cotula discolor	Beach Buttons	Asteraceae					
2022/05/20	Kevin Koen	Osteospermum bolusii		Asteraceae					
2022/05/20	Kevin Koen	Phylica axillaris	Axil Hardleaf	Rhamnaceae					
2022/05/20	Kevin Koen	Prismatocarpus candolleanus	Tube Shaftfruit	Campanulaceae					
2022/05/20	Kevin Koen	Protea lanceolata	Lanceleaf Sugarbush	Proteaceae					
2022/05/20	Kevin Koen	Thesium sp.	Rootthugs	Santalaceae					
2022/03/20	Kevin Koen Kevin Koen	Trachyandra affinis	Rootulugs	Asphodelaceae					
2023/02/10	Kevin Koen Kevin Koen	Trifolium arvense arvense	Haresfoot Clover	Fabaceae					
2020/10/21	Kevin Koen	-		Fabaceae					
		Trifolium campestre	hop trefoil						
2020/10/21	Kevin Koen	Vicia benghalensis	reddish tufted vetch	Fabaceae					
2021/12/16	Kevin Koen	Wahlenbergia undulata	African Blue Bell	Campanulaceae					
2019/11/13	Mark Berry	Bobartia robusta	Giant Rushiris	Iridaceae					
2020/06/17	Mark Berry	Cephalophyllum diversiphyllum	Variable Starfig	Aizoaceae					
2019/11/13	Mark Berry	Crassula nudicaulis	Sourfig Stonecrop	Crassulaceae					
	-	nudicaulis	bound biolicerop						
2019/11/13	Mark Berry	Delosperma neethlingiae		Aizoaceae					
2019/11/13	Mark Berry	Euphorbia procumbens	Snake Milkball	Euphorbiaceae					
2019/11/13	Mark Berry	Indigofera nigromontana	Swartberg Indigo	Fabaceae					
2019/11/14	Mark Berry	Lampranthus elegans	Elegant Brightfig	Aizoaceae					
2019/11/13	Mark Berry	Trichodiadema occidentale	Ruens Crownfig	Aizoaceae					
2019/11/13	Mark Berry	Tritonia crocata	Blazing star	Iridaceae					
2014/09/05	Nicola van Berkel	Achyranthemum paniculatum	Sewejaartjie Chafflower	Asteraceae					
2014/09/05	Nicola van Berkel	Acrodon bellidiflorus	Common Tiptoothfig	Aizoaceae					
2014/09/05	Nicola van Berkel	Aspalathus alopecurus	Foxtail Capegorse	Fabaceae					
2014/09/05	Nicola van Berkel	Athanasia quinquedentata quinquedentata		Asteraceae					
2014/09/05	Nicola van Berkel	Berkheya armata	Giant Capethistle	Asteraceae					
2014/09/05	Nicola van Berkel	Carpobrotus mellei	Mountain Sourfig	Aizoaceae					
2014/09/05	Nicola van Berkel	Commelina africana Africana	Common Yellow Dayflower	Commelinaceae					
2014/09/05	Nicola van Berkel	Crassula nudicaulis nudicaulis	Sourfig Stonecrop	Crassulaceae					
2014/09/05	Nicola van Berkel	Cullumia carlinoides	Limestone Snakethistle	Asteraceae					
2014/09/05	Nicola van Berkel	Geissorhiza inconspicua	Hidden Satin	Iridaceae					
2014/09/05	Nicola van Berkel	Lampranthus elegans	Elegant Brightfig	Aizoaceae					
2014/09/05	Nicola van Berkel	Lobelia tomentosa	Woolly Lobelia	Campanulaceae					
2014/09/05	Nicola van Berkel	Lotononis umbellata		Fabaceae					
2014/09/05	Nicola van Berkel	Moraea tricuspidata	Reed Uintjie	Iridaceae					
2014/09/05	Nicola van Berkel	Oedera genistifolia	Lesser Perdekaroo	Asteraceae					
2014/09/05	Nicola van Berkel	Pelargonium alchemilloides	Mantle Storksbill	Geraniaceae					
2014/09/05	Nicola van Berkel	Pseudoselago sp.	Puffbushes						
2014/09/05	Nicola van Berkel	Romulea flava viridiflora	Thinleaf Greenbract Froetang	Scrophulariaceae Iridaceae					
2014/09/05	Nicola van Berkel	Satyrium parviflorum	Devil Satyre						
2014/09/03	Nicola van Berkel	Watsonia laccata	Coastal Watsonia	Orchidaceae Iridaceae					
2014/09/12	Sally Adam	Acrodon bellidiflorus	Common Tiptoothfig	Aizoaceae					
2020/09/18	Sally Adam	Blepharis integrifolia	Narrow Lashes	Acanthaceae					
2014/09/12	Sally Adam	Cephalophyllum diversiphyllum	Variable Starfig	Aizoaceae					

	a 11 - 1							
2020/09/18	Sally Adam	Delosperma litorale	White Trailing Iceplant	Aizoaceae				
2020/09/18	Sally Adam	Delosperma neethlingiae		Aizoaceae				
2020/09/18	Sally Adam	Ehrharta calycina	Perennial Veldtgrass	Poaceae				
2014/09/12	Sally Adam	Euphorbia foliosa		Euphorbiaceae				
2020/09/18	Sally Adam	Ficinia marginata	Common Annual Clubrush	Cyperaceae				
2014/09/12	Sally Adam	Freesia caryophyllacea	Fragrant Kammetjie	Iridaceae				
2020/09/18	Sally Adam	Harpochloa falx	Caterpillar Grass	Poaceae				
2020/09/18	Sally Adam	Heliophila pendula	Hanging Sunspurge	Brassicaceae				
2014/09/12	Sally Adam	Hermannia saccifera	cumin hermannia	Malvaceae				
2020/09/18	Sally Adam	Indigofera sp12	Garden Route Indigo	Fabaceae				
2020/09/18	Sally Adam	Lotononis umbellata		Fabaceae				
2014/09/12	Sally Adam	Massonia	Hedgehog Lilies	Asparagaceae				
2014/09/12	Sally Adam	Nemesia bicornis	Twohorn Lionface	Scrophulariaceae				
2020/09/18	Sally Adam	Pharnaceum	Spookasems	Molluginaceae				
2020/09/18	Sally Adam	Satyrium parviflorum	Devil Satyre	Orchidaceae				
2014/09/12	Sally Adam	Tulista minor	Renoster Fataloe	Asphodelaceae				
2020/08/21	Sandra Falanga	Acacia cyclops	western coastal wattle	Fabaceae				
2020/06/17	Sandra Falanga	Acrodon bellidiflorus	Common Tiptoothfig	Aizoaceae				
2020/08/21	Sandra Falanga	Agathosma capensis	Cape Buchu	Rutaceae				
2020/08/21	Sandra Falanga	Arctotis acaulis	Flat African Daisy	Asteraceae				
2020/08/21	Sandra Falanga	Arctotis pinnatifida		Asteraceae				
2020/06/17	Sandra Falanga	Aspalathus alopecurus	Foxtail Capegorse	Fabaceae				
2020/08/21	Sandra Falanga	Babiana fourcadei	Langeberg Bobbejaantjie	Iridaceae				
2020/08/21	Sandra Falanga	Bobartia robusta	Giant Rushiris	Iridaceae				
2020/08/21	Sandra Falanga	Bulbine annua		Asphodelaceae				
2020/08/21	Sandra Falanga	Cephalophyllum diversiphyllum	Variable Starfig	Aizoaceae				
2020/06/17	Sandra Falanga	Chaenostoma revolutum	Fineleaf Skunkbush	Scrophulariaceae				
2020/06/17	Sandra Falanga	Cheilanthes viridis	Green Cliff Brake	Pteridaceae				
2020/08/21	Sandra Falanga	Chironia baccifera	Christmas Berry	Gentianaceae				
2020/06/17	Sandra Falanga	Clutia laxa	Twiggy Clut	Peraceae				
2020/08/21	Sandra Falanga	Crassula ericoides	Heath Stonecrop	Crassulaceae				
2020/06/17	Sandra Falanga	Crassula nudicaulis nudicaulis	Sourfig Stonecrop	Crassulaceae				
2020/08/21	Sandra Falanga	Crassula subulate	Bihair Stonecrop	Crassulaceae				
2020/08/21	Sandra Falanga	Crossyne guttata	April-fool Parasol	Amaryllidaceae				
2020/08/21	Sandra Falanga	Cullumia carlinoides	Limestone Snakethistle	Asteraceae				
2020/06/17	Sandra Falanga	Curio archeri	Toxic Beads	Asteraceae				
2020/06/17	Sandra Falanga	Delosperma neethlingiae		Aizoaceae				
2020/08/21	Sandra Falanga	Dicerothamnus rhinocerotis	Renosterbush	Asteraceae				
2020/08/21	Sandra Falanga	Diospyros dichrophylla	Poison Starapple	Ebenaceae				
2020/08/21	Sandra Falanga	Drimia capensis	Maerman Squill	Asparagaceae				
2020/08/21	Sandra Falanga	Erica quadrangularis	Smoke Heath	Ericaceae				
2020/08/21	Sandra Falanga	Erica versicolor	Twotone Heath	Ericaceae				
2020/08/21	Sandra Falanga	Eriocephalus africanus	Cape Snow Bush	Asteraceae				
2020/08/21	Sandra Falanga	Eriospermum pubescens	Hairyheart Woolseed	Asparagaceae				
2020/08/21	Sandra Falanga	Euphorbia procumbens	Snake Milkball	Euphorbiaceae				
2020/00/21	Sandra Falanga	Gethyllis afra	Bramakranka	Amaryllidaceae				
2020/06/17	Nandra Halanda	(retuvilis atra						

2020/08/21	Sandra Falanga	Haemanthus sanguineus	Smooth Bloodlily	Amaryllidaceae					
2020/08/21	Sandra Falanga	Helichrysum patulum	Honey Everlasting	Asteraceae					
2020/08/21	Sandra Falanga	Helichrysum teretifolium	Needle Everlasting	Asteraceae					
2020/06/17	Sandra Falanga	Heliophila subulate	Common Sunspurge	Brassicaceae					
2020/06/17	Sandra Falanga	Hermannia flammea		Malvaceae					
2020/06/17	Sandra Falanga	Hermannia flammula	Blazing Dollsrose	Malvaceae					
2020/08/21	Sandra Falanga	Hermannia lavandulifolia		Malvaceae					
2020/08/21	Sandra Falanga	Hermannia saccifera	cumin hermannia	Malvaceae					
2020/08/21	Sandra Falanga	Hermannia salviifolia		Malvaceae					
2020/08/21	Sandra Falanga	Lampranthus elegans	Elegant Brightfig	Aizoaceae					
2020/08/21	Sandra Falanga	Leucadendron salignum	Common Sunshine Conebush	Proteaceae					
2020/08/21	Sandra Falanga	Lysimachia arvensis	scarlet pimpernel	Primulaceae					
2020/06/17	Sandra Falanga	Metalasia acuta	Pointy Blombush	Asteraceae					
2020/06/17	Sandra Falanga	Monsonia emarginata	Monsonia	Geraniaceae					
2020/08/21	Sandra Falanga	Montinia caryophyllacea	Pepperbush	Montiniaceae					
2020/08/21	Sandra Falanga	Moraea polyanthos	Manyflower Tulp	Iridaceae					
2020/08/21	Sandra Falanga	Moraea tripetala	Blue Uintjie	Iridaceae					
2020/06/17	Sandra Falanga	Muraltia ericifolia	Heathy Purplegorse	Polygalaceae					
2020/06/17	Sandra Falanga	Nemesia floribunda	Common Lionface	Scrophulariaceae					
2020/08/21	Sandra Falanga	Nidorella ivifolia	Ivy Vleiweed	Asteraceae					
2020/06/17	Sandra Falanga	Oedera pungens		Asteraceae					
2020/06/17	Sandra Falanga	Othonna gymnodiscus	Leafy Babooncabbage	Asteraceae					
2020/06/17	Sandra Falanga	Oxalis ciliaris	Fringe Sorrel	Oxalidaceae					
2020/08/21	Sandra Falanga	Pelargonium alchemilloides	Mantle Storksbill	Geraniaceae					
2020/06/17	Sandra Falanga	Pelargonium candicans	Velvet Storksbill	Geraniaceae					
2020/08/21	Sandra Falanga	Pelargonium dipetalum	Bunny-ear Storksbill	Geraniaceae					
2020/06/17	Sandra Falanga	Pelargonium luteolum		Geraniaceae					
2020/08/21	Sandra Falanga	Pelargonium pulverulentum	Powdered-Leaved Pelargonium	Geraniaceae					
2020/08/21	Sandra Falanga	Pharnaceum sp.	Spookasems	Molluginaceae					
2020/08/21	Sandra Falanga	Plecostachys serpyllifolia	petite-licorice	Asteraceae					
2020/06/17	Sandra Falanga	Pseudoselago sp.	Puffbushes	Scrophulariaceae					
2020/08/21	Sandra Falanga	Romulea flava	Greenbract Froetang	Iridaceae					
2020/08/21	Sandra Falanga	Romulea rosea	Rosy sandcrocus	Iridaceae					
2020/08/21	Sandra Falanga	Searsia incisa effusa		Anacardiaceae					
2020/06/17	Sandra Falanga	Searsia lucida	Glossy Currantrhus	Anacardiaceae					
2020/06/17	Sandra Falanga	Searsia rosmarinifolia	Rosemary Currentrhus	Anacardiaceae					
2020/06/17	Sandra Falanga	Selago sp.	Bitterbushes	Scrophulariaceae					
2020/08/21	Sandra Falanga	Seriphium plumosum	Bankrupt Bush	Asteraceae					
2020/06/17	Sandra Falanga	Thunbergia capensis	Cape Clockvine	Acanthaceae					
2020/08/21	Sandra Falanga	Trachyandra ciliata	Common Capespinach	Asphodelaceae					
2020/08/21	Sandra Falanga	Ursinia nana	Little Paraseed	Asteraceae					
2020/08/21	Sandra Falanga	Watsonia laccata	Coastal Watsonia	Iridaceae					

10.4 The Biodiversity Spatial Plan land uses recommendations.

The image on the next page illustrates land uses that the WC BSP deems acceptable for the conservation planning mapped categorised that are included in the plan, such as CBAs and ONAs.

		Conse	rvation	Agric	ulture	Recre	sm and ational ilities	Rural Accomodation Urban Busine				usiness (& Industr	ial	Infrastructure Installations					
	LAND USE SUB-CATEGORIES (Refer to table 4.7 for descriptions)	Proclaimed Protected Areas	Other Nature Areas	Intensive Agriculture	Extensive Agriculture	Low Impact Facilities	Hgh Impact Facilities	Agri-worker Accommodation	Small holdings	Urban Development & Expansion	Community Facilities & Institutions	New Settlements	Rural Business	Non-place-bound Industry (low-moderate impact)	Non-place-bound industry (high impact)	Extractive industry (incl. Prospecting)	Linear - roads & rail	Linear - pipelines & canals	Linear - powerlines	Other Utilities
MAP CATEGORY	DESIRED MANAGEMENT OBJECTIVE	¥:		missible ely to co diversity	mpromi	se the	are	biodive	estricted rsity obje onditions	ctive ar	e only p	ermissibl	le under	certain			iversity	hat will (objectiv missible	e and ar	
Protected Area	Must be kept in a natural state, with a management plan focused on maintaining or improving the state of biodiversity.	Land use within proclaimed protected areas are subject to management plan drawn up for that specific protected area.																		
Critical Biodiversity Area 1	Keep natural, with no further loss of habitat. Degraded areas should be rehabilitated. Only low-impact, biodiversity-sensitive land uses are appropriate.	V	Ø	N	R	0	0	0	0	0	0	N	0	0	0	0	0	0	ß	0
Critical Biodiversity Area 2	Keep natural, with no further loss of habitat. Degraded areas should be rehabilitated. Only low-impact, biodiversity-sensitive land uses are appropriate.	V	Ø	0	ß	0	0	0	0	0	0	0	0	0	0	0	8	ß	8	0
Ecological Support Area 1: Terrestrial	Maintain in a functional, near-natural state. Some habitat loss is acceptable, provided the underlying biodiversity objectives and ecological functioning are not compromised.	V	Ø	0	8	0	0	0	0	0	0	0	8	0	0	0	0	8	0	0
Ecological Support Area 1: Aquatic	Maintain in a functional, near-natural state. Some habitat loss is acceptable, provided the underlying biodiversity objectives and ecological functioning are not compromised.	V	Ø	8	R	0	0	0	8	0	0	0	0	0	0	0	8	R	ß	8
Ecological Support Area 2	Restore and/or manage to minimise impact on ecological infrastructure functioning; especially soil and water-related services.	V	Ø	0	8	0	0	0	0	0	0	0	0	0	0	0	8	8	8	8
ONA: Natural to Near-Natural	Minimise habitat and species loss and ensure ecosystem functionality through strategic landscape planning. Offers flexibility in permissible land uses, but some authorisation may still be required for high impact land uses.	V	Ø	8	V	0	0	ß	8	8	8	8	8	0	0	ß	8	8	8	0
ONA: Degraded	Minimise habitat and species loss and ensure ecosystem functionality through strategic landscape planning. Offers flexibility in permissible land uses, but some authorisation may still be required for high impact land uses.	ß	8	ß	V	Ø	8	R	V	ß	8	8	ß	8	8	ß	Ø	V	V	V
No Natural Remaining	These areas are suitable for development but may still provide limited biodiversity and ecological infrastructure functions and should be managed in a way that minimises impacts on biodiversity and ecological infrastructure.	ß	8	V	V	Ø	v	V	v	V	v	V	V	Ø	Ø	v	Ø	v	v	Ø