

SMEC INTERNAL REF. C1998

Traffic Impact Assessment

Pieter Koen Development, 195/21, Kraaibosch

Reference No. C1998
Prepared for Kantey and Templer (Pty) Ltd
21 September 2023

Document Control

Document	Traffic Impact Assessment
File Location	P:\C1998\Working\DivT\Reports
Project Name	Pieter Koen Development 195/21, Kraaibosch
Project Number	C1998

Revision History

Revision No.	Date	Change Order	Prepared By	Reviewed By
0	2023/09/21	-	M S Holmes T Makombe	E B Jordaan IntPE

Issue Register

Distribution List	Date Issued	Number of Copies
Kantey and Templer (Pty) Ltd	21 September 2023	1 - PDF

SMEC Company Details

Approved by	EB Jordaan, IntPE						
Address	13 Progress Street, Dormehlsdrift, George, 6529						
Telephone	+27 44 873 5029	+27 44 873 5029 Facsimile					
Email	Emile.Jordaan@smec.com	Website	www.smec.com				
Signature	3W.						

The information within this document is and shall remain the property of: SMEC South Africa (Pty) Ltd - George

Important Notice

This report is confidential and is provided solely for the purposes of the Traffic Impact Assessment for the **Pieter Koen Development, Portion 21, Farm 195 Kraaibosch, George**. This report is provided pursuant to a Consultancy Agreement between SMEC South Africa Pty Limited ("SMEC") and **Kantey and Templer (Pty) Ltd**, under which SMEC undertook to perform a specific and limited task for **Kantey and Templer (Pty) Ltd**. This report is strictly limited to the matters stated in it and subject to the various assumptions, qualifications and limitations in it and does not apply by implication to other matters. SMEC makes no representation that the scope, assumptions, qualifications and exclusions set out in this report will be suitable or sufficient for other purposes nor that the content of the report covers all matters which you may regard as material for your purposes.

This report must be read as a whole. Any subsequent report must be read in conjunction with this report.

The report supersedes all previous draft or interim reports, whether written or presented orally, before the date of this report. This report has not and will not be updated for events or transactions occurring after the date of the report or any other matters which might have a material effect on its contents, or which come to light after the date of the report. SMEC is not obliged to inform you of any such event, transaction or matter nor to update the report for anything that occurs, or of which SMEC becomes aware, after the date of this report.

Unless expressly agreed otherwise in writing, SMEC does not accept a duty of care or any other legal responsibility whatsoever in relation to this report, or any related enquiries, advice or other work, nor does SMEC make any representation in connection with this report, to any person other than **Kantey and Templer (Pty) Ltd.** Any other person who receives a draft or a copy of this report (or any part of it) or discusses it (or any part of it) or any related matter with SMEC, does so on the basis that he or she acknowledges and accepts that he or she may not rely on this report nor on any related information or advice given by SMEC for any purpose whatsoever.

Table of Contents

1	Introduction	6
2	Background Information	8
2.1	Land Use	8
2.2	Road Network	8
2.3	Road Classification	10
2.4	Site Access	10
3	Traffic Demand Estimation	12
3.1	Proposed Development	12
3.2	Assessment Scenarios	12
3.3	Trip Generation	12
3.4	Adjusted Trip Generation	13
3.5	Traffic Modelling	13
	3.5.1 2031 Forecast Year	13
4	Intersection Operation Analysis	16
4.1	Knysna Road and Kraaibosch Road Intersection	17
4.2	Road 1 and Road 5 Intersection	18
4.3	Road 1 and Glenwood Intersection	19
4.4	Road 2 and Road 3 Intersection	20
4.5	Development Access along Road 2	21
4.6	Analysis Summary	21
5	Site Traffic Assessment	22
5.1	Internal Operations	22
5.2	Parking	22
5.3	Loading	23
5.4	Throat Length	24
	Proposed Improvements	26
6	·	

List of Tables

Table 3-1: Trip Generation	12
Table 3-2: Adjusted Trip Generation	13
Table 4-1: Intersection-Based Level of Service Criteria	16
Table 4-2: Intersection Analysis Summary	2 ²
Table 5-1: Residential Land Use Parking Requirements	22
Table 5-2: Remaining Land Uses' Parking Requirements	23
Table 5-3: Queue Length Analysis Results	25
List of Figures	
Figure 1-1: Locality Plan (Source: OpenStreetMap)	6
Figure 1-2: Site Development Plan (Source: SDK Architects)	
Figure 2-1: 2022 Kraaibosch Roads Master Plan	9
Figure 2-2 Proposed Site Access	1
Figure 3-1: 2031 AM Peak Hour Modelled Flows	14
Figure 3-2: 22031 AM Peak Hour Degree of Saturation	14
Figure 3-3: 2031 PM Peak Hour Modelled Flows	15
Figure 3-4: 2031 PM Peak Hour Degree of Saturation	15
Figure 4-1: Intersection Layout: Knysna Road and Saint George's Road	17
Figure 4-2: Intersection Layout: Road 1 and Road 5	18
Figure 4-3: Intersection Layout: Road 1 and Glenwood Avenue	19
Figure 4-4: Intersection Layout: Road 2 and Road 3	20
Figure 4-5: Development Access Layout	2 ²
Figure 5-1: Throat Length Measurements	24

1 Introduction

SMEC South Africa (Pty) Ltd was appointed by Kantey and Templer (Pty) Ltd to conduct a Traffic Impact Assessment for the proposed Pieter Koen Development on Portion 21 of the Farm Kraaibosch 195, George. The site is situated within the Kraaibosch development area to the north of Knysna Road (N12). A locality plan is shown in **Figure 1-1**.

Figure 1-1: Locality Plan (Source: OpenStreetMap)

The subject site measures approximately 17 hectares in extent and will comprise of 137 apartments and flats, 100 townhouses, 79 single dwelling units, a health and fitness centre, a preschool, offices, shopping centre and a restaurant. The development layout and phasing plan are shown in **Figure 1-2.**

The purpose of this Traffic Impact Assessment is to quantify the anticipated impact of the development traffic, and recommend remedial measures as required. The study was conducted in accordance with the Committee of Transport Officials South African Traffic Impact and Site Traffic Assessment Manual (COTO, TMH 16 Volume 1).

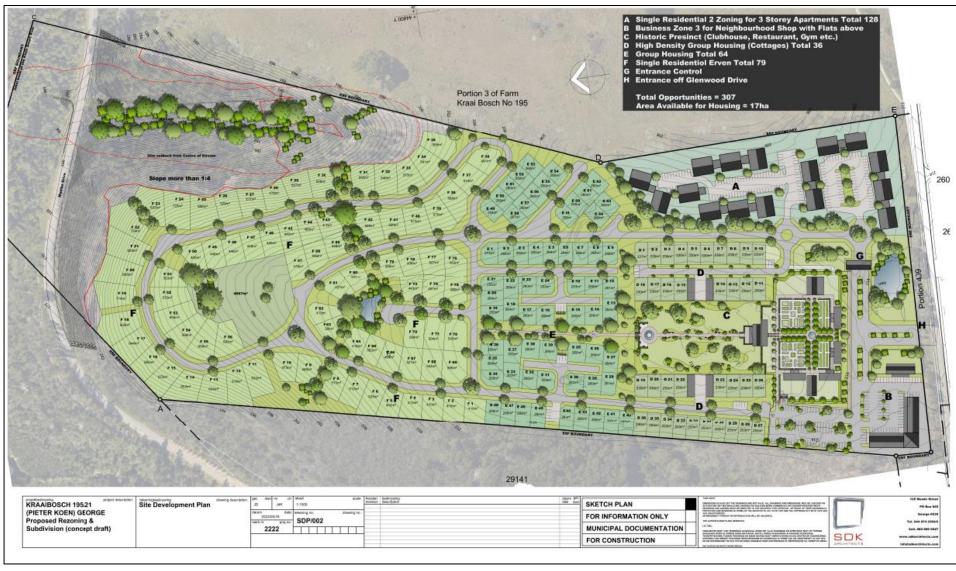


Figure 1-2: Site Development Plan (Source: SDK Architects)

2 Background Information

2.1 Land Use

SMEC South Africa published the latest Kraaibosch Cost Apportionment Model Report in April 2022. The updated report incorporated the latest land use plans of planned developments forming part of the Kraaibosch development area. A density of 15 dwelling units per hectare was assumed for undeveloped areas for which no planning layouts were available at the time, which normally equates to middle income single residential or group housing development specifications. At the time of publication of the Kraaibosch Cost Apportionment Model, the development particulars for Erf 195/21 Kraaibosch comprised 20 ha High Income Units at 15 dwelling units per hectare.

2.2 Road Network

The trip generation potential associated with the planned developments informed changes to the Kraaibosch Roads Master Plan, also included in the Kraaibosch Cost Apportionment Model Report. The planned road network would include the following (refer to **Figure 2-1**):

- **Road 1** comprises of a single carriageway road with one lane per direction up to Road 2. Should the Dam Development proceed, there might be a need to extend Road 1 northward up to Madiba Drive as a dual carriageway road with two lanes per direction.
- Road 2 comprises of a half-width of the planned single carriageway road with one lane per direction.
- Planned Road 3 would comprise of a single carriageway road with one lane per direction.
- Road 4A comprises of a single carriageway road with one lane per direction.
- Planned Road 4B would comprise of a single carriageway road with one lane per direction.
- Planned Road 5 would comprise of a single carriageway road with one lane per direction.
- Future Road Link (between Knysna Rd (N12) and Nelson Mandela Blvd) would comprise of a dual carriageway road with two lanes per direction.

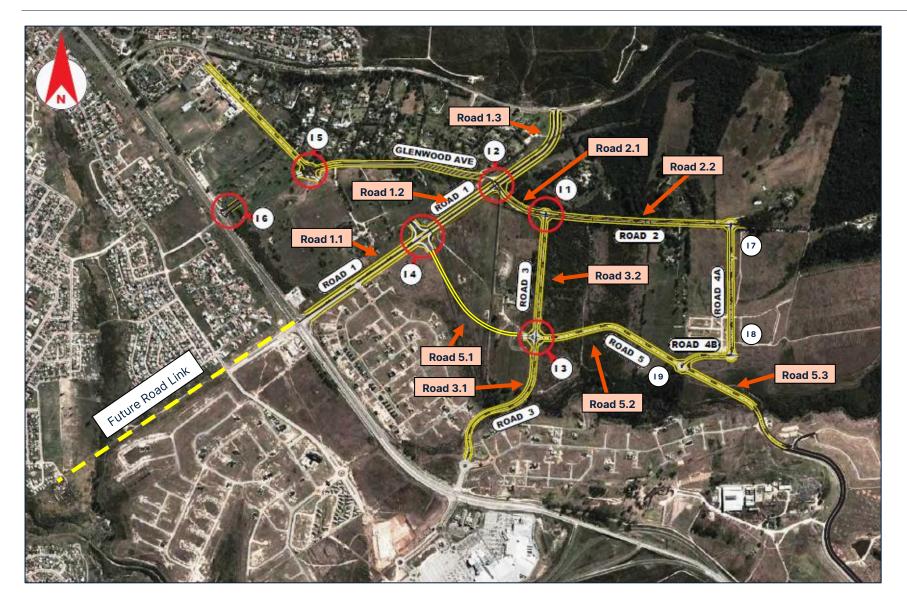


Figure 2-1: 2022 Kraaibosch Roads Master Plan

2.3 Road Classification

The road classification requirements were derived from the Western Cape Government (WCG) Access Management Guidelines (2020). Equivalent driveways within a Suburban Roadside Development Environment are defined as follows:

Low Volume Driveway
 High Volume Driveway
 Equivalent Collector
 Equivalent Minor Arterial
 Equivalent Major Arterial
 Low Volume Driveway
 30 – 60 vehicles per hour (peak direction)
 60 – 500 vehicles per hour (peak direction)
 500 – 1 000 vehicles per hour (peak direction)
 > 1 000 vehicles per hour (peak direction)

Taking the anticipated traffic flows into consideration, the road network elements in the vicinity of the subject site are classified as follows:

Road 1 - Blue Mountain Boulevard Equivalent Major Arterial (Class 2) Road 2 Equivalent Minor Arterial (Class 3) Road 3 Equivalent Minor Arterial (Class 3) Road 5 Equivalent Collector (Class 4) Knysna Road - National Route (N9) Major Arterial (Class 2) Madiba/ Saasveld Drive Equivalent Minor Arterial (Class 3) Glenwood Drive Equivalent Minor Arterial (Class 3) **Development Access** Equivalent Collector (Class 4)

2.4 Site Access

The access spacing requirements were derived from the Western Cape Government (WCG) Access Management Guidelines (2020). The minimum spacing requirement for a Class 3 Road within an intermediate roadside development environment is as follows:

- 180 m from a high-volume driveway to an unsignalised full intersection
- 180 m from a high-volume driveway to a high-volume driveway

It is planned for the development to be served by a single access along Road 2 \sim 180 metres downstream of Cape Estates Development Access and 250 metres upstream of Groenekloof Avenue (Road 4A). Refer to **Figure 2-2**.

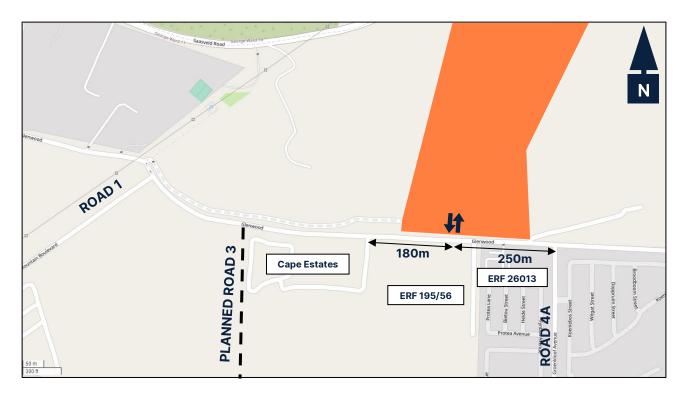


Figure 2-2 Proposed Site Access

It is our submission that the proposed development access conforms to the WCG access spacing requirements.

It should however be noted that there are two existing sub-standard access spacings on the southern edge of Road 2 in the vicinity of the proposed development access, that of ERF 195/56 and ERF 26013. It is recommended that upon the development of ERF 195/56, the existing access along Road 2 should be relocated to a point directly opposite the proposed ERF 195/21 development access. The George Municipality should evaluate whether they want to impose any changes to the substandard access to ERF 26013.

3 Traffic Demand Estimation

3.1 Proposed Development

Pieter Koen Development is planned to comprise of 137 apartments and flats, 100 townhouses, 79 single dwelling units, a health and fitness centre, a preschool, offices, shopping centre and a restaurant. This is in contrast to the initially anticipated 20 ha High Income Units at 15 dwelling units per hectare, forthcoming from the 2022 Kraaibosch Cost Apportionment Model Report. Taking the increased development potential of the subject site into account, it would be required to update the Kraaibosch Cost Apportionment Model and assess the capacity and operations of planned transport infrastructure in the vicinity of the site.

3.2 Assessment Scenarios

With reference to the 2022 Kraaibosch Cost Apportionment Model Report, it was deemed appropriate to assess the same forecast scenarios which informed the development of the associated Roads Master Plan. As such, a 2031 Weekday AM and Weekday PM Peak Hour scenario was analysed as part of this project.

3.3 Trip Generation

The Trip Generation Rates for the land use types forming part of the development were obtained from the COTO TMH 17 South African Trip Data Manual, dated September 2012. The trip generation potential of the planned development is shown in **Table 3-1**.

Table 3-1: Trip Generation

		Trip Generation Rate		Traffic Generation (vph)			
Land Use	Quantity	Wee	kday	Weekday AM		Weekday PM	
		AM	PM	IN	OUT	IN	OUT
Single Dwelling Units	79 units	1.0	1.0	20	59	55	24
Apartments and Flats	137 units	0.65	0.25	22	67	62	27
Townhouses	100 units	0.85	0.25	21	64	60	26
Health & Fitness Centre	420 sqm GLA	5	9.5	11	11	24	16
Pre-School (Day Care)	25 students	1	0.8	13	13	10	10
Offices	895 sqm GLA	2.1	2.1	16	3	4	15
Shopping Centre	900 sqm GLA	0.6	3.4	20	11	88	88
Restaurant, Quality (Sit-down)	165 sqm GLA	0.75	11.8	1	0	8	12
Tatal Nam Trina					227	311	217
Total New Trips				3	50	5:	28

It is anticipated that the planned development would generate 350 and 528 new vehicular trips during the Weekday AM and PM Peak Hours respectively.

3.4 Adjusted Trip Generation

Taking into consideration the planned public transport initiatives for the Kraaibosch Development Area, and the route alignment of Go George Bus Service, a 15% trip generation adjustment factor was applied to development traffic in the 2022 Kraaibosch Cost Apportionment Model Report. The adjusted trip generation potential of the planned development is shown in **Table 3-2**.

Table 3-2: Adjusted Trip Generation

Localities	Trip Adjustment	Trip Generation Rate		Traffic Generation (vph)			
Land Use	Factor	Week	day	Weekday AM		Weekday PM	
		AM	PM	IN	OUT	IN	OUT
Single Dwelling Units		1.0	1.0	17	50	47	20
Apartments and Flats		0.65	0.25	19	57	53	23
Townhouses		0.85	0.25	18	54	51	22
Health & Fitness Centre		5	9.5	9	9	20	13
Pre-School (Day Care)	15%	1	0.8	11	11	9	9
Offices		2.1	2.1	14	2	3	12
Shopping Centre		0.6	3.4	17	9	75	75
Restaurant, Quality (Sit-down)		0.75	11.8	1	0	7	10
Total New Trine					192	265	184
Total New Trips				29	98	4	49

Taking into consideration suitable trip generation adjustment factors, the planned development is anticipated to generate 298 and 449 new vehicular trips during the Weekday AM and PM Peak Hours.

3.5 Traffic Modelling

The Visum mesoscopic transport model developed as part of the 2022 Kraaibosch Cost Apportionment Model was used to assess the traffic-related impact associated with the revised trip generation potential of the subject site, while still considering the compound effect of all development land in and around the Kraaibosch Development Area.

3.5.1 2031 Forecast Year

The 2031 Forecast Year model scenario considers full build-out of the Kraaibosch Development Area as well as implementation of the planned Kraaibosch Roads Master Plan, as defined in the 2022 Kraaibosch Cost Apportionment Model Report.

Taking into consideration the addition of proposed Pieter Koen Development trips to the Kraaibosch Meso Model, the 2031 AM Peak Hour modelled flows are shown in **Figure 3-1**.

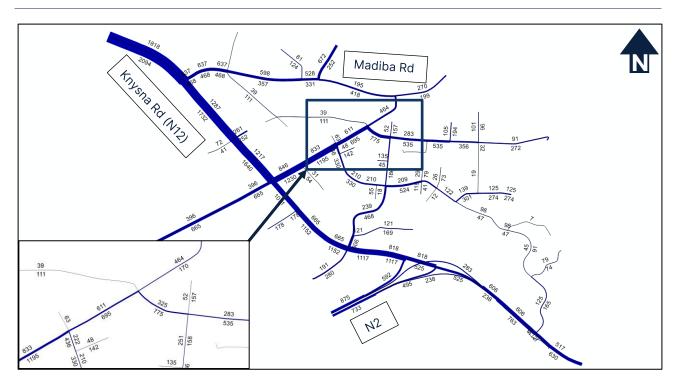


Figure 3-1: 2031 AM Peak Hour Modelled Flows

It is our submission that the addition of Pieter Koen Development trips would have an insignificant impact on the 2031 forecast year traffic flows of the Kraaibosch planned road network.

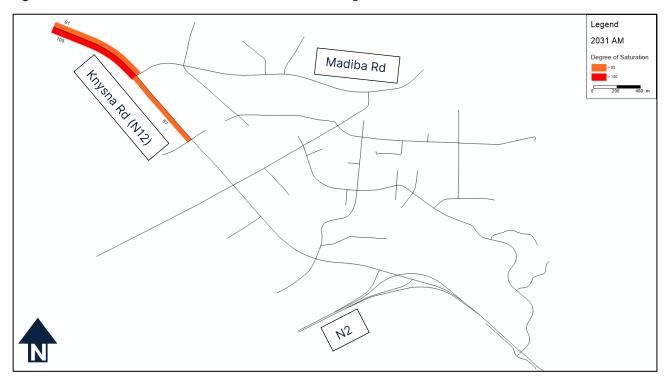


Figure 3-2: 22031 AM Peak Hour Degree of Saturation

It is concluded that the road network would be sufficient to accommodate the anticipated 2031 Weekday AM Peak Hour traffic demand at acceptable levels of service.

Taking into consideration the addition of Pieter Koen Development trips to the Kraaibosch Meso Model, the 2031 PM Peak Hour modelled flows is shown in **Figure 3-3**.

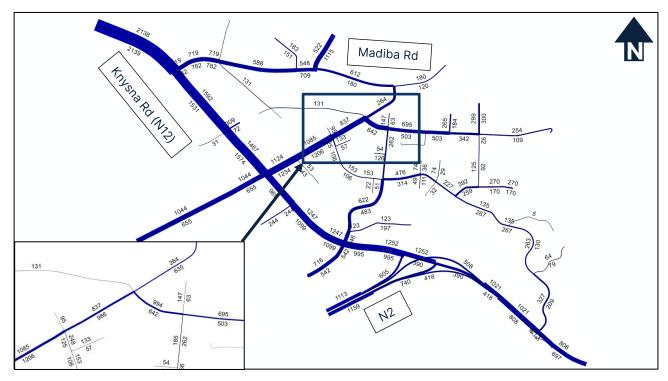


Figure 3-3: 2031 PM Peak Hour Modelled Flows

It is our submission that the addition of Pieter Koen Development trips would have an insignificant impact on the 2031 forecast year traffic flows of the Kraaibosch planned road network.

Figure 3-4 illustrates the associated 2031 PM Peak Hour degree of saturation.

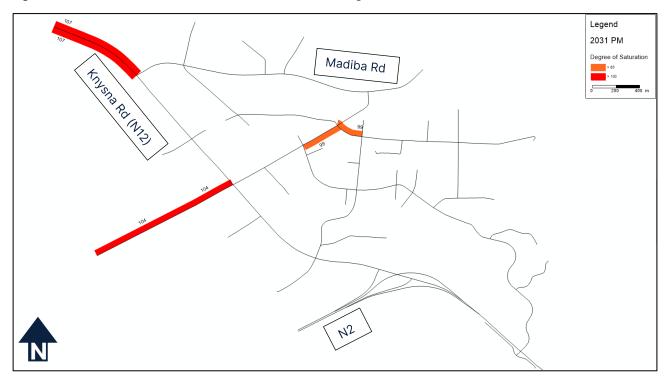


Figure 3-4: 2031 PM Peak Hour Degree of Saturation

It is concluded that the road network would be sufficient to accommodate the anticipated 2031 Weekday PM Peak Hour traffic demand at acceptable levels of service.

4 Intersection Operation Analysis

Intersection capacity analyses were undertaken to determine the anticipated operational performance of the site accesses and surrounding road network, taking into consideration the implementation of the development and associated development trips. The state-of-the-art traffic engineering software package, SIDRA Intersection 9.0 software, was used.

The operational performance of an intersection is typically quantified in terms of Level of Service as defined by the SIDRA Intersection User Guide Ver. 8 (2018). These definitions relate average delays at intersections (for individual turning movements, for each approach and for the overall intersection) to a level of service ranging from A to F, as are shown in **Table 4-1**.

Table 4-1: Intersection-Based Level of Service Criteria

	Control	LOS for V/C Ratio		
Level of Service	Signals and	Roundabouts	Stop Signs and Yield Signs	V/C > 1
Α	d ≤ 10	d ≤ 10	d ≤ 10	F
В	10 <d 20<="" th="" ≤=""><th>10 < d ≤ 20</th><th>10 <d 15<="" th="" ≤=""><th>F</th></d></th></d>	10 < d ≤ 20	10 <d 15<="" th="" ≤=""><th>F</th></d>	F
С	20 < d ≤ 35	20 < d ≤ 35	15 < d ≤ 25	F
D	35 < d ≤ 55	35 < d ≤ 50	25 < d ≤ 35	F
E	55 < d ≤ 80	50 < d ≤ 70	35 < d ≤ 50	F
F	80 < d	70 < d	50 < d	F

The intersection analyses forming part of the project assignment are listed below:

- Knysna Road and Kraaibosch Road intersection
- Road 1 and Road 5 intersection
- Road 1 and Glenwood Avenue intersection
- Road 2 and Road 3 intersection
- Development Access along Road 2

The following scenarios were analysed:

• 2031 Background + Development Traffic

Detailed SIDRA outputs are contained in **Annexure A**.

4.1 Knysna Road and Kraaibosch Road Intersection

The planned intersection of N9 Knysna Street and Kraaibosch Road is a signal-controlled intersection. The north approach will comprise of a short left-slip lane, two through-lanes and two short right-turn lanes. The east approach will comprise of a short left-slip lane, a through lane, a shared through-and-right-turn lane and a short right-turn lane. The south approach will comprise of a short left-slip lane, two through-lanes and two short right-turn lanes. The west approach will comprise of a short left-slip lane, a through lane, a shared through-and-right-turn lane and a short right-turn lane. Refer to **Figure 4-1**.

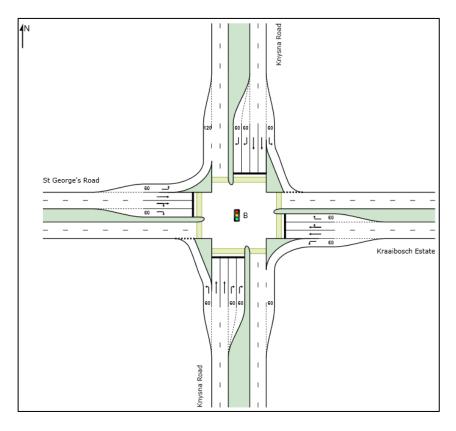


Figure 4-1: Intersection Layout: Knysna Road and Saint George's Road

2031 Background + Development Traffic

Taking into consideration the planned intersection layout as well as the 2031 Background Traffic plus the anticipated development traffic flows, the intersection is anticipated to operate at an overall Level of Service B for both the Weekday AM and PM Peak Hours, with an average delay of approximately 16 and 14 seconds respectively.

It is concluded that the planned access layout would be able to accommodate the 2031 Background plus Development Traffic at an acceptable Level of Service.

4.2 Road 1 and Road 5 Intersection

The planned intersection of Road 1 and Road 5 would be a signal-controlled full intersection. The north approach will comprise of one lane serving all movements. The east approach will comprise of a shared left-and-through lane and a shared right-and-through lane. The south approach will comprise of one lane serving all movements. The west approach will comprise of a shared left-and-through lane, a through lane and a short right-turn lane. Refer to **Figure 4-2**.

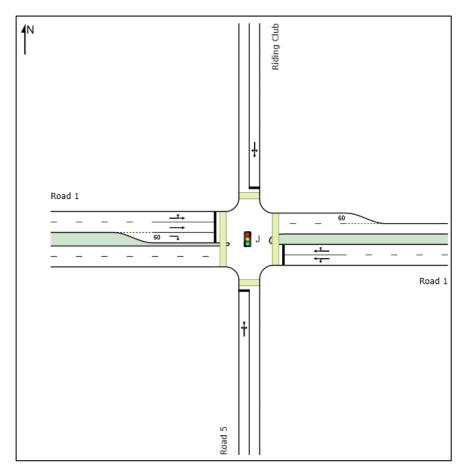


Figure 4-2: Intersection Layout: Road 1 and Road 5

2031 Background + Development Traffic

Taking into consideration the planned intersection layout as well as the 2031 Background Traffic plus the anticipated development traffic flows, the intersection is anticipated to operate at an overall Level of Service C and B during the Weekday AM and PM Peak Hours, with an average delay of approximately 22 and 14 seconds respectively.

It is concluded that the planned intersection configuration would be able to accommodate the 2031 Background plus Development Traffic at an acceptable Level of Service.

4.3 Road 1 and Glenwood Intersection

The planned intersection of Road 1 and Glenwood Avenue would take the form of a roundabout. All approaches will comprise of one lane serving all movements. Refer to **Figure 4-3**.

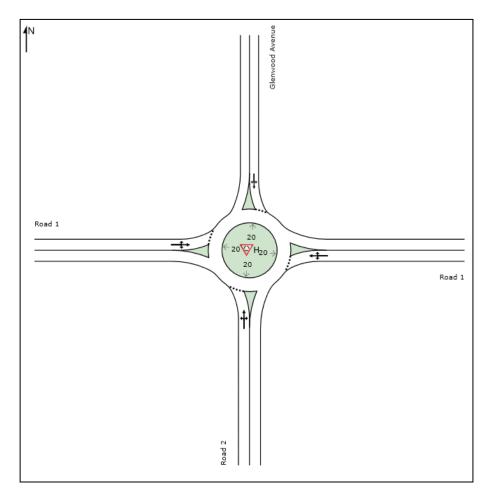


Figure 4-3: Intersection Layout: Road 1 and Glenwood Avenue

2031 Background + Development Traffic

Taking into consideration the planned intersection layout as well as the 2031 Background Traffic plus the anticipated development traffic flows, the worst approach is anticipated to operate at Level of Service A and F during the Weekday AM and PM Peak hours, with an average delay of approximately 9 and 70 seconds for the Weekday AM and PM Peak Hours, respectively.

It is concluded that the planned intersection layout would not be able to accommodate the 2031 Background plus Development Traffic at an acceptable Level of Service. This is as a result of an increase in the development trip generation compared to what was included in 2022 Kraaibosch Cost Apportionment Model Report. In addition, more developments are taking access off Road 2 than previously planned, which has led to increased demand and associated capacity requirements at the intersection of Road 1 and Glenwood Avenue.

Taking the above into consideration, one would ideally propose upgrades to this intersection however this is not achievable in this instance. It is therefore our submission that one of the following measures be taken to reduce the possibility for this intersection to become oversaturated:

- Developments to obtain access from Road 5 instead of Road 2
- Provide secondary access to the Kraaibosch Development Area, i.e. Road 5.1

4.4 Road 2 and Road 3 Intersection

The intersection of Road 2 and Road 3 is planned to take the form of a roundabout. All approaches will comprise of one lane serving all movements. Refer to **Figure 4-4**.

Figure 4-4: Intersection Layout: Road 2 and Road 3

2031 Background + Development Traffic

Taking into consideration the planned intersection layout as well as the 2031 Background Traffic plus the anticipated development traffic flows, the worst approach is anticipated to operate at Level of Service A and B during the Weekday AM and PM Peak hours, with an average delay of approximately 10 and 15 seconds for the Weekday AM and PM Peak Hours.

It is concluded that the planned intersection configuration would be able to accommodate the 2031 Background plus Development Traffic at an acceptable Level of Service.

4.5 Development Access along Road 2

2031 Background + Development Traffic

The Development Access along Road 2 is planned to take the form of a priority-controlled T-junction, with the development access under stop control. All approaches will comprise of one lane serving all turning movements. Refer to **Figure 4-5**.

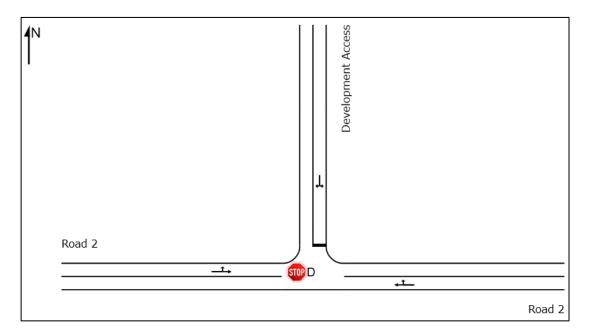


Figure 4-5: Development Access Layout

Taking into consideration the planned access layout as well as the 2031 Background Traffic plus the anticipated development traffic flows, the worst approach is anticipated to operate at Level of Service B and C during the Weekday AM and PM Peak Hours, with an average delay of approximately 13 and 21 seconds respectively.

It is concluded that the planned access layout would be able to accommodate the 2031 Background plus Development Traffic at an acceptable Level of Service.

4.6 Analysis Summary

A summary of the analysis outputs is provided in **Table 4-2**.

Table 4-2: Intersection Analysis Summary

	Level of Service			
Intersection	Weekday AM	Weekday PM		
Knysna Road and Kraaibosch Road	В	В		
Road 1 and Road 5 Intersection	С	В		
Road 1 and Glenwood Intersection	A*	F*		
Road 2 and Road 3 Intersection	A*	B*		
Development Access along Road 2	B*	C*		

^{*}Worst Priority Controlled Approach LOS

5 Site Traffic Assessment

This report does not include a Site Traffic Assessment, as the building plans are not yet finalised. Reference is however made to general design criteria to be considered in compilation of the site development plan.

5.1 Internal Operations

The internal layout of the planned development should be designed in such a way to promote ease of movement. A minimum 12-metre bellmouth radius is recommended for use along at least all circulating roads, but ideally at all internal road junctions. The access and internal road layout should be such to allow for the swept path of fire trucks. Should the internal road network not be designed to cater for moving company vehicles, suitable provision should be made outside the development, in the direct vicinity of the access.

5.2 Parking

Parking provision is an important consideration of any development and would ultimately ensure that vehicular traffic is accommodated on-site in its entirety. Insufficient parking provision would have dire consequences on the operational performance of the site and surrounding public roads, as well as on road safety.

The George Integrated Zoning Scheme By-Law (2017) was used to ascertain the applicable parking requirements. For the purpose of determining parking requirements, Pieter Koen Development is taken to fall within a Normal Area.

With regard to residential land uses, it was assumed that parking would be provided on single residential and townhouse erven. Visitors' bays would however still need to be provided for townhouses. Taking this into consideration, parking requirements for the residential component of the development are stipulated in **Table 5-1**.

Table 5-1: Residential Land Use Parking Requirements

Land Use	Quantity	Minimum Parking Ratio	Parking Requirement (bays)
Apartments and Flats	137 units	1.75 bays per dwelling0.25 bays/unit for visitors	240 for residents 35 for visitors
Townhouse	100 units	0.25 bays/unit for visitors	25 for visitors
	Total		300

It is concluded that 300 parking bays would need to be provided for the residential component of the development.

The parking requirements of the remaining land uses are provided in **Table 5-2**.

Table 5-2: Remaining Land Uses' Parking Requirements

Land Use	Quantity	Minimum Parking Ratio	Parking Requirement (bays)
Restaurant	6 bays per 100 m² GLA	165 m²	10
Offices	4 bays per 100 m² GLA	895 m²	36
Shopping Centre	4 bays per 100 m² GLA	900 m²	36
Day Care (preschool)	1 bay per 10 children plus 1 stop & drop facility	25 children	3
Spa / Relaxation	10 bays per 100m² GLA	420 m²	42
	127		

It is concluded that 127 parking bays would need to be provided for the remaining components of the development, of which 3 parking bays would need to be accessible to the physically disabled. The school would also be required to provide a stop & drop facility.

5.3 Loading

The George Integrated Zoning Scheme By-Law (2017) was used to ascertain the loading bay requirements to be adhered to. Taking into consideration the planned floor area of the shopping centre land use, 2 loading bays would be required for a supermarket between 500 and 1000 square metres GLA.

5.4 Throat Length

Adequate throat length provision is essential in ensuring sufficient operation of a development access and preventing possible spill-back onto the surrounding public road. The throat length requirements were derived from the Committee of Transport Officials South African Traffic Impact and Site Traffic Assessment Standards and Requirements Manual (COTO, TMH 16 Volume 2).

Considering the gated access control from a Class 3 Equivalent Minor Arterial Street, the minimum requirement for ingress throat lengths is 75 metres and egress throat lengths is 25 metres. It is our submission that the required throat lengths are accommodated on the site development plan. Refer to **Figure 5-1.**

Figure 5-1: Throat Length Measurements

Taking into consideration the planned security-controlled access, a queue length analysis was undertaken to assess the operational performance thereof. The following assumptions were made:

- A service rate of 360 and 240 vehicles per hour for residents and visitor's lanes respectively
- 20% of vehicles arriving during the critical Weekday PM Peak Hour would be visitors

Taking the above into consideration, the queue length analysis results are provided in Table 5-3.

Table 5-3: Queue Length Analysis Results

Internación	I Inches	Acc	ess
Intersection	Units	Residents	Visitors
Number of service lanes	lanes	1	1
Service rate	veh/h/lane	360	240
Arrival distribution per lane	%	80%	20%
Arrival rate per lane	veh/h/lane	212	53
95th percentile number of vehicles in system	veh	5.1	1.8
95th percentile queue length	metres	12	12

It is our submission that the throat length provided would be sufficient to accommodate the anticipated demand. The access road should be designed in such a way to ensure that both access lanes are accessible with consideration of the anticipated queue lengths.

6 Proposed Improvements

The transport improvements defined within the latest Kraaibosch Cost Apportionment Model Report of April 2022 still apply.

No further road capacity improvements would be required as part of the proposed development.

7 Conclusion and Recommendations

SMEC South Africa (Pty) Ltd was appointed by Kantey and Templer (Pty) Ltd to conduct a Traffic Impact Assessment for the proposed Pieter Koen Development on Portion 21 of the Farm Kraaibosch 195, George. The site is situated within the Kraaibosch development area to the north of Knysna Road (N12).

The subject site measures approximately 17 hectares in extent and will comprise of 137 apartments and flats, 100 townhouses, 79 single dwelling units, a health and fitness centre, a preschool, offices, shopping centre and a restaurant. Taking into consideration the planned public transport initiatives for the Kraaibosch Development Area, and the route alignment of Go George Bus Service, the planned development is anticipated to generate 298 and 449 new vehicular trips during the Weekday AM and PM Peak Hours.

It is planned for the development to be served by a single access along Road 2 ~180 metres downstream of Cape Estates Development Access and 250 metres upstream of Groenekloof Avenue (Road 4A). It is our submission that the proposed development access conforms to the WCG access spacing requirements.

It should however be noted that there are two existing sub-standard access spacings on the southern edge of Road 2 in the vicinity of the proposed development access, that of ERF 195/56 and ERF 26013. It is recommended that upon the development of ERF 195/56, the existing access along Road 2 should be relocated to a point directly opposite the proposed ERF 195/21 development access. The George Municipality should evaluate whether they want to impose any changes to the substandard access to ERF 26013.

It is concluded that the planned intersection layout of Road 1 and Glenwood Avenue would not be able to accommodate the 2031 Background plus Development Traffic at an acceptable Level of Service. This is as a result of an increase in the development trip generation compared to what was included in 2022 Kraaibosch Cost Apportionment Model Report. In addition, more developments are taking access off Road 2 than previously planned, which has led to increased demand and associated capacity requirements at the intersection of Road 1 and Glenwood Avenue.

Taking the above into consideration, one would ideally propose upgrades to this intersection however this is not achievable in this instance. It is therefore our submission that one of the following measures be taken to reduce the possibility for this intersection to become oversaturated:

- Developments to obtain access from Road 5 instead of Road 2
- Provide secondary access to the Kraaibosch Development Area, i.e. Road 5.1

It is concluded that 300 parking bays would need to be provided for the residential component of the development. 127 parking bays would need to be provided for the remaining components of the development, of which 3 parking bays would need to be accessible to the physically disabled. The school would also be required to provide a stop & drop facility.

Taking into consideration the planned floor area of the shopping centre land use, 2 loading bays would be required for a supermarket between 500 and 100 square meters GLA.

Considering the gated access control from a Class 3 Equivalent Minor Arterial Street, the minimum requirement for ingress throat lengths is 75 metres and egress throat lengths is 25 metres. It is our submission that the required throat lengths are accommodated on the site development plan.

The transport improvements defined within the latest Kraaibosch Cost Apportionment Model Report of April 2022 still apply. No further road capacity improvements would be required as part of the proposed development.

Taking the above into consideration, it is concluded that this development is supported from a traffic engineering perspective, provided that the site-specific requirements are implemented as per the applicable design standards.

Annexure A Detailed SIDRA Outputs

Knysna Road and Kraaibosch Road Intersection

MOVEMENT SUMMARY

Site: B [Knysna/St George's 2031 PM +195/21 + 60m RHT (Site Folder: General)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 40 seconds (Site Practical Cycle Time)

Cigilic	210 L	ασ.σ, ι.	(i ixou	1111107007	(110)	oor an late	or Cycl	0 111110 –	10 00001	ido (Oito i	Taotioa	i Cycle Tilli	<u> </u>	
Vehi	cle Mo	vement	Perfor	mance										
D.4.		INPL	JT	DEMA	ND	D	Δ		95% B	ACK OF		E((A NI.	Δ
Mov ID	Turn	VOLUI	MES	FLOV	٧S	Deg.		Level of	QUI	EUE	Prop.	Stop Rate	Aver. No.	
טו		[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	n: Knys	na Road												
1	L2	96	3.0	101	3.0	0.106	8.6	LOS A	0.7	5.3	0.50	0.67	0.50	51.7
2	T1	748	3.0	787	3.0	0.653	14.3	LOS B	7.2	51.8	0.92	0.81	0.98	48.7
3	R2	125	3.0	132	3.0	0.310	24.6	LOS C	1.3	9.3	0.95	0.74	0.95	42.4
Appro	oach	969	3.0	1020	3.0	0.653	15.1	LOS B	7.2	51.8	0.88	0.79	0.93	48.0
East:	Kraaib	osch Est	ate											
4	L2	177	3.0	186	3.0	0.097	7.0	LOS A	0.0	0.0	0.00	0.53	0.00	54.8
5	T1	512	3.0	539	3.0	0.595	9.2	LOS A	8.1	58.5	0.80	0.70	0.80	52.2
6	R2	545	3.0	574	3.0	* 0.595	15.5	LOS B	4.0	29.1	0.94	0.81	0.97	47.4
Appro	oach	1234	3.0	1299	3.0	0.595	11.7	LOS B	8.1	58.5	0.75	0.72	0.76	50.3
North	: Knys	na Road												
7	L2	519	3.0	546	3.0	0.460	7.9	LOS A	3.3	23.8	0.52	0.70	0.52	52.2
8	T1	901	3.0	948	3.0	* 0.786	11.9	LOS B	8.6	61.5	0.88	0.81	1.00	50.3
9	R2	47	3.0	49	3.0	0.109	22.8	LOS C	0.5	3.2	0.89	0.70	0.89	43.3
Appro		1467	3.0	1544	3.0	0.786	10.8	LOS B	8.6	61.5	0.75	0.77	0.83	50.7
West	St Ge	orge's Ro	nad											
10	L2	281	3.0	296	3.0	0.155	7.7	LOS A	0.0	0.0	0.00	0.53	0.00	54.8
11	T1	480	3.0	505	3.0	* 0.970	36.6	LOS D	10.3	74.0	1.00	1.23	2.00	37.4
12	R2	283	3.0	298	3.0	0.970	41.6	LOS D	7.7	55.4	1.00	1.23	2.08	35.9
		1044	3.0	1099	3.0	0.970	30.2	LOS C	10.3	74.0			1.49	40.4
Appro	Jacii	1044	3.0	1099	3.0	0.970	30.2	LU3 C	10.3	74.0	0.73	1.02	1.49	40.4
All Vehic	les	4714	3.0	4962	3.0	0.970	16.2	LOS B	10.3	74.0	0.77	0.82	0.98	47.4

MOVEMENT SUMMARY

Site: B [Knysna/St George's 2031 AM +195/21 + 60m RHT (Site Folder: General)]

New Site

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 60 seconds (Site Optimum Cycle Time - Minimum

Degree of Saturation)

	/ehicle Movement Performance													
Vehic	cle Mo	vement	Perfo	rmance										
Mov ID	Turn	INPU VOLUI [Total		DEMA FLO\ [Total		Deg. Satn	Aver. Delay	Level of Service		ACK OF EUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	: Knysr	na Road												
1	L2	218	3.0	229	3.0	0.225	7.6	LOS A	1.4	10.0	0.40	0.66	0.40	52.6
2	T1	778	3.0	819	3.0	* 0.509	8.2	LOS A	6.1	44.1	0.54	0.46	0.54	52.9
3	R2	75	3.0	79	3.0	0.107	21.8	LOS C	8.0	6.1	0.74	0.71	0.74	43.8
Appro	ach	1071	3.0	1127	3.0	0.509	9.1	LOS A	6.1	44.1	0.52	0.52	0.52	52.1
East:	Kraaibo	osch Esta	ate											
4	L2	196	3.0	206	3.0	0.108	6.2	LOS A	0.0	0.0	0.00	0.53	0.00	54.8
5	T1	274	3.0	288	3.0	0.331	12.2	LOS B	5.6	40.5	0.70	0.59	0.70	50.1
6	R2	759	3.0	799	3.0	* 0.680	20.7	LOS C	9.0	64.4	0.93	0.85	0.97	44.4
Appro	ach	1229	3.0	1294	3.0	0.680	16.5	LOS B	9.0	64.4	0.73	0.74	0.76	47.0
North	: Knysn	a Road												
7	L2	537	3.0	565	3.0	0.446	7.0	LOS A	3.3	23.4	0.35	0.65	0.35	52.9
8	T1	508	3.0	535	3.0	0.332	13.6	LOS B	5.5	39.4	0.73	0.62	0.73	49.1
9	R2	173	3.0	182	3.0	0.347	24.5	LOS C	2.2	16.0	0.82	0.76	0.82	42.4
Appro	ach	1218	3.0	1282	3.0	0.446	12.2	LOS B	5.5	39.4	0.58	0.65	0.58	49.6
West:	St Geo	orge's Ro	ad											
10	L2	103	3.0	108	3.0	0.057	7.9	LOS A	0.0	0.0	0.00	0.53	0.00	54.8
11	T1	235	3.0	247	3.0	* 0.527	28.8	LOS C	3.7	26.2	0.98	0.77	0.99	40.9
12	R2	58	3.0	61	3.0	0.308	33.8	LOS C	1.8	12.6	0.95	0.75	0.95	38.4
Appro	ach	396	3.0	417	3.0	0.527	24.1	LOS C	3.7	26.2	0.72	0.70	0.72	43.4
All Ve	hicles	3914	3.0	4120	3.0	0.680	13.9	LOS B	9.0	64.4	0.63	0.65	0.63	48.7

Road 1 and Road 5 Intersection

MOVEMENT SUMMARY

Site: J [Road 1/Riding Club 2031 AM + 195/21 (Site Folder: General)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 70 seconds (Site Optimum Cycle Time - Minimum

Delay)

	'													
Vehic	cle Mo	vement	Perfo	rmance										
Mov		INPL		DEMA		Deg.	Avor	Level of		ACK OF	Prop.	Effective	Aver. No.	Aver.
ID	Turn	VOLU		FLO\		Satn	Delay	Service		EUE	Que	Stop Rate	Cycles	
		[Total	HV]	[Total	HV]		Dolay	0011100	[Veh.	Dist]	Quo	Otop Hato	0,0.00	
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	: Road	5												
1	L2	436	0.0	459	0.0	0.612	24.4	LOS C	12.8	89.8	0.86	0.83	0.86	42.0
2	T1	1	0.0	1	0.0	* 0.612	18.9	LOS B	12.8	89.8	0.86	0.83	0.86	42.9
3	R2	1	0.0	1	0.0	0.612	24.4	LOS C	12.8	89.8	0.86	0.83	0.86	41.9
Appro	ach	438	0.0	461	0.0	0.612	24.4	LOS C	12.8	89.8	0.86	0.83	0.86	42.0
	D I .	•												
	Road 1													
4	L2	1	0.0	1	0.0	0.599	28.5	LOS C	10.9	76.6	0.91	0.77	0.91	42.6
5	T1	695	0.0	732	0.0	0.599	22.9	LOS C	10.9	76.6	0.91	0.77	0.91	43.5
6	R2	1	0.0	1	0.0	* 0.599	28.5	LOS C	10.9	76.0	0.91	0.77	0.91	42.5
Appro	ach	697	0.0	734	0.0	0.599	23.0	LOS C	10.9	76.6	0.91	0.77	0.91	43.5
North	: Riding	a Club												
7	L2	1	0.0	1	0.0	0.279	32.7	LOS C	2.1	14.5	0.87	0.76	0.87	38.8
8	T1	1	0.0	1	0.0	0.279	26.2	LOS C	2.1	14.5	0.87	0.76	0.87	39.5
9	R2	63	0.0	66	0.0	0.279	31.7	LOS C	2.1	14.5	0.87	0.76	0.87	38.8
Appro	ach	65	0.0	68	0.0	0.279	31.6	LOS C	2.1	14.5	0.87	0.76	0.87	38.8
West:	Road	1												
10	L2	1	0.0	1	0.0	0.169	16.9	LOS B	3.2	22.4	0.61	0.50	0.61	49.3
11	T1	611	0.0	643	0.0	0.497	13.4	LOS B	11.4	79.6	0.71	0.61	0.71	49.3
12	R2	222	0.0	234	0.0	* 0.626	30.0	LOS C	7.3	51.4	0.97	0.86	1.00	39.3
Appro		834	0.0	878	0.0	0.626	17.8	LOS B	11.4	79.6	0.78	0.68	0.78	46.2
1111										. ,				
All Ve	hicles	2034	0.0	2141	0.0	0.626	21.5	LOS C	12.8	89.8	0.84	0.75	0.84	44.0

MOVEMENT SUMMARY

Site: J [Road 1/Riding Club 2031 PM + 195/21 (Site Folder: General)]

New Site

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 70 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehicle Movement Performance														
Vehi	cle Mo	vement	Perfo	rmance										
Mov		INPL		DEMA		Dog	Avor	Level of		ACK OF	Prop.	Effoctivo	Aver. No.	Aver.
ID	Turn	VOLUI		FLO\		Deg. Satn	Delay	Service		EUE	Que	Stop Rate	Cycles	
		[Total	HV]	[Total	HV]		Dolay	COLVIOC	[Veh.	Dist]	Que	Otop Hato	Cyclos	·
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	n: Road	5												
1	L2	125	0.0	132	0.0	0.400	34.4	LOS C	4.2	29.6	0.93	0.78	0.93	37.7
2	T1	1	0.0	1	0.0	0.400	28.9	LOS C	4.2	29.6	0.93	0.78	0.93	38.4
3	R2	1	0.0	1	0.0	0.400	34.4	LOS C	4.2	29.6	0.93	0.78	0.93	37.6
Appro	oach	127	0.0	134	0.0	0.400	34.4	LOS C	4.2	29.6	0.93	0.78	0.93	37.7
East:	Road 1	ſ												
4	L2	1	0.0	1	0.0	0.540	19.7	LOS B	12.7	88.7	0.76	0.67	0.76	47.5
5	T1	986	0.0	1038	0.0	0.540	14.2	LOS B	12.7	88.7	0.76	0.67	0.76	48.6
6	R2	1	0.0	1	0.0	* 0.540	19.7	LOS B	12.6	88.2	0.76	0.67	0.76	47.4
Appro	oach	988	0.0	1040	0.0	0.540	14.2	LOS B	12.7	88.7	0.76	0.67	0.76	48.6
North	: Riding	g Club												
7	L2	1	0.0	1	0.0	0.519	40.2	LOS D	3.5	24.5	0.98	0.78	0.98	36.2
8	T1	1	0.0	1	0.0	* 0.519	32.9	LOS C	3.5	24.5	0.98	0.78	0.98	36.8
9	R2	95	0.0	100	0.0	0.519	38.5	LOS D	3.5	24.5	0.98	0.78	0.98	36.2
Appro	oach	97	0.0	102	0.0	0.519	38.4	LOS D	3.5	24.5	0.98	0.78	0.98	36.2
West	: Road	1												
10	L2	1	0.0	1	0.0	0.160	9.7	LOS A	2.7	18.7	0.37	0.32	0.37	54.7
11	T1	837	0.0	881	0.0	0.468	5.5	LOS A	10.3	72.2	0.47	0.41	0.47	55.3
12	R2	248	0.0	261	0.0	* 0.530	21.1	LOS C	7.5	52.3	0.90	0.84	0.90	43.4
Appro	oach	1086	0.0	1143	0.0	0.530	9.1	LOS A	10.3	72.2	0.57	0.51	0.57	52.1
All Ve	ehicles	2298	0.0	2419	0.0	0.540	13.9	LOS B	12.7	88.7	0.69	0.61	0.69	48.7

Road 1 and Glenwood Intersection

MOVEMENT SUMMARY

♥Site: H [Glenwood/Road 1 2031 AM + 195/21 (Site Folder: General)]

New Site

Site Category: (None)

Roundabout

	/ehicle Movement Performance													
Vehi	cle Mo	vement	Perform	nance										
Mov	Turn	INPL VOLUI		DEM <i>A</i> FLO\			Aver.	Level of	95% BA QUE		Prop.	Effective Stop	Aver. No. Cycles	Aver.
ID		[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Rate	Cycles	speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	n: Road	2												
1	L2	535	0.0	563	0.0	0.629	5.4	LOS A	6.2	43.4	0.61	0.59	0.61	52.8
2	T1	111	0.0	117	0.0	0.629	5.7	LOS A	6.2	43.4	0.61	0.59	0.61	54.1
3	R2	129	0.0	136	0.0	0.629	10.2	LOS B	6.2	43.4	0.61	0.59	0.61	54.1
Appro	oach	775	0.0	816	0.0	0.629	6.3	LOS A	6.2	43.4	0.61	0.59	0.61	53.2
East:	Road 1	ĺ												
4	L2	10	0.0	11	0.0	0.171	5.4	LOS A	1.0	7.1	0.53	0.57	0.53	53.2
5	T1	160	0.0	168	0.0	0.171	5.8	LOS A	1.0	7.1	0.53	0.57	0.53	54.4
6	R2	1	0.0	1	0.0	0.171	10.4	LOS B	1.0	7.1	0.53	0.57	0.53	54.4
Appro	oach	171	0.0	180	0.0	0.171	5.8	LOS A	1.0	7.1	0.53	0.57	0.53	54.4
North	: Glenv	vood Aver	nue											
7	L2	1	0.0	1	0.0	0.067	9.1	LOS A	0.4	3.1	0.80	0.71	0.80	51.6
8	T1	39	0.0	41	0.0	0.067	9.3	LOS A	0.4	3.1	0.80	0.71	0.80	52.8
9	R2	1	0.0	1	0.0	0.067	14.1	LOS B	0.4	3.1	0.80	0.71	0.80	52.8
Appro	oach	41	0.0	43	0.0	0.067	9.4	LOS A	0.4	3.1	0.80	0.71	0.80	52.8
West	: Road	1												
10	L2	1	0.0	1	0.0	0.553	5.9	LOS A	4.7	33.0	0.65	0.65	0.65	51.6
11	T1	335	0.0	353	0.0	0.553	6.0	LOS A	4.7	33.0	0.65	0.65	0.65	52.9
12	R2	276	0.0	291	0.0	0.553	10.6	LOS B	4.7	33.0	0.65	0.65	0.65	52.9
Appro	oach	612	0.0	644	0.0	0.553	8.1	LOS A	4.7	33.0	0.65	0.65	0.65	52.9
All Vehic	eles	1599	0.0	1683	0.0	0.629	7.0	LOS A	6.2	43.4	0.62	0.61	0.62	53.2

MOVEMENT SUMMARY

♥Site: H [Glenwood/Road 1 2031 PM + 195/21 (Site Folder: General)]

New Site

Site Category: (None)

Roundabout

Vehic	cle Mo	vement	Perform	nance										
Mov	Turn	INPL VOLUI	MES	DEMA FLOV	VS		Aver. Delay	Level	QUI	ACK OF EUE	Prop. Que	Effective Stop	N0. c	Aver. Speed
		[Total	HV]	[Total	HV]	•	_ 0.4,	Service	[Veh.	Dist]	~~~	Rate	Cycles	, poou
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	: Road	12												
1	L2	524	0.0	552	0.0	0.766	12.4	LOS B	10.8	75.5	1.00	1.04	1.33	48.8
2	T1	1	0.0	1	0.0	0.766	12.7	LOS B	10.8	75.5	1.00	1.04	1.33	49.9
3	R2	118	0.0	124	0.0	0.766	17.2	LOS B	10.8	75.5	1.00	1.04	1.33	49.8
Appro	ach	643	0.0	677	0.0	0.766	13.3	LOS B	10.8	75.5	1.00	1.04	1.33	49.0
East:	Road 1	1												
4	L2	172	0.0	181	0.0	1.057	70.0	LOS F	36.3	253.8	1.00	2.13	3.90	27.8
5	T1	462	0.0	486	0.0	1.057	70.4	LOS F	36.3	253.8	1.00	2.13	3.90	28.1
6	R2	1	0.0	1	0.0	1.057	75.0	LOS F	36.3	253.8	1.00	2.13	3.90	28.1
Appro	ach	635	0.0	668	0.0	1.057	70.3	LOS F	36.3	253.8	1.00	2.13	3.90	28.1
North	Glenv	vood Ave												
7	L2	1	0.0	1	0.0	0.289	13.3	LOS B	2.2	15.2	0.96	0.92	0.96	48.8
8	T1	131	0.0	138	0.0	0.289	13.5	LOS B	2.2	15.2	0.96	0.92	0.96	49.9
9	R2	1	0.0	1	0.0	0.289	18.3	LOS B	2.2	15.2	0.96	0.92	0.96	49.9
Appro	ach	133	0.0	140	0.0	0.289	13.5	LOS B	2.2	15.2	0.96	0.92	0.96	49.9
West:	Road	1												
10	L2	1	0.0	1	0.0	0.653	5.1	LOS A	7.7	54.0	0.62	0.60	0.62	50.7
11	T1	146	0.0	154	0.0	0.653	5.2	LOS A	7.7	54.0	0.62	0.60	0.62	52.0
12	R2	691	0.0	727	0.0	0.653	9.9	LOS A	7.7	54.0	0.62	0.60	0.62	52.0
Appro	ach	838	0.0	882	0.0	0.653	9.1	LOS A	7.7	54.0	0.62	0.60	0.62	52.0
All Vehic	les	2249	0.0	2367	0.0	1.057	27.8	LOS C	36.3	253.8	0.85	1.18	1.77	41.3

Road 2 and Road 3 Intersection

MOVEMENT SUMMARY

♥Site: G [Road 2/Road 3 2031 AM +195/21 (Site Folder: General)]

New Site

Site Category: (None) Roundabout

rtoui	luabou													
Vehi	cle Mo	vement	Perform	nance										
Mov ID	Turn	INPU VOLUI [Total		DEMA FLOV [Total		Deg. Satn	Aver. Delay	Level of Service	95% BA QUE [Veh.		Prop. Que	Effective Stop Rate	Aver. No. _S Cycles	Aver. Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	n: Road	13												
1	L2	197	1.0	207	1.0	0.321	7.8	LOS A	2.1	14.9	0.74	0.79	0.74	51.9
2	T1	10	1.0	11	1.0	0.321	8.0	LOS A	2.1	14.9	0.74	0.79	0.74	53.1
3	R2	44	1.0	46	1.0	0.321	12.7	LOS B	2.1	14.9	0.74	0.79	0.74	53.1
Appro	oach	251	1.0	264	1.0	0.321	8.7	LOS A	2.1	14.9	0.74	0.79	0.74	52.1
East:	Road 2	2												
4	L2	83	1.0	87	1.0	0.469	5.3	LOS A	3.5	25.0	0.54	0.56	0.54	53.1
5	T1	452	1.0	476	1.0	0.469	5.6	LOS A	3.5	25.0	0.54	0.56	0.54	54.4
6	R2	1	1.0	1	1.0	0.469	10.2	LOS B	3.5	25.0	0.54	0.56	0.54	54.3
Appro	oach	536	1.0	564	1.0	0.469	5.5	LOS A	3.5	25.0	0.54	0.56	0.54	54.2
North	: Portic	on 88 of 19	95											
7	L2	1	1.0	1	1.0	0.158	5.7	LOS A	0.9	6.1	0.50	0.67	0.50	51.2
8	T1	31	1.0	33	1.0	0.158	5.9	LOS A	0.9	6.1	0.50	0.67	0.50	52.4
9	R2	126	1.0	133	1.0	0.158	10.5	LOS B	0.9	6.1	0.50	0.67	0.50	52.3
Appro	oach	158	1.0	166	1.0	0.158	9.6	LOS A	0.9	6.1	0.50	0.67	0.50	52.3
West	: Road	2												
10	L2	42	1.0	44	1.0	0.240	4.2	LOS A	1.6	11.6	0.24	0.45	0.24	54.0
11	T1	239	1.0	252	1.0	0.240	4.4	LOS A	1.6	11.6	0.24	0.45	0.24	55.3
12	R2	44	1.0	46	1.0	0.240	9.0	LOS A	1.6	11.6	0.24	0.45	0.24	55.3
Appro	oach	325	1.0	342	1.0	0.240	5.0	LOS A	1.6	11.6	0.24	0.45	0.24	55.1
All Vehic	cles	1270	1.0	1337	1.0	0.469	6.5	LOS A	3.5	25.0	0.50	0.59	0.50	53.8

MOVEMENT SUMMARY

♥Site: G [Road 2/Road 3 2031 PM +195/21 (Site Folder: General)]

New Site

Site Category: (None)

Roundabout

rtoui	luubuu													
Vehi	cle Mo	vement	Perform	nance										
Mov		INPL		DEMA		Dog	Aver.	Level	95% BA		Prop.	Effective	Aver.	Aver.
ID	Turn	VOLU	MES	FLO\	WS	Satn	Dolay	of	QUE	EUE	Que	Stop	N0. c	Aver. Speed
טו		[Total	HV]	[Total	HV]	Jain	Delay	of Service	[Veh.	Dist]	Que	Rate	Cycles	ppeeu
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	n: Road	13												
1	L2	116	1.0	122	1.0	0.231	7.1	LOS A	1.5	10.4	0.70	0.74	0.70	52.2
2	T1	29	1.0	31	1.0	0.231	7.4	LOS A	1.5	10.4	0.70	0.74	0.70	53.4
3	R2	40	1.0	42	1.0	0.231	12.0	LOS B	1.5	10.4	0.70	0.74	0.70	53.4
Appro	oach	185	1.0	195	1.0	0.231	8.2	LOS A	1.5	10.4	0.70	0.74	0.70	52.6
East:	Road 2	2												
4	L2	28	1.0	29	1.0	0.487	6.0	LOS A	3.6	25.6	0.63	0.62	0.63	52.6
5	T1	476	1.0	501	1.0	0.487	6.2	LOS A	3.6	25.6	0.63	0.62	0.63	53.9
6	R2	1	1.0	1	1.0	0.487	10.9	LOS B	3.6	25.6	0.63	0.62	0.63	53.8
Appro	oach	505	1.0	532	1.0	0.487	6.2	LOS A	3.6	25.6	0.63	0.62	0.63	53.8
North	: Portic	on 88 of 19	95											
7	L2	1	1.0	1	1.0	0.123	11.1	LOS B	0.8	5.8	0.86	0.84	0.86	48.0
8	T1	13	1.0	14	1.0	0.123	11.3	LOS B	8.0	5.8	0.86	0.84	0.86	49.0
9	R2	50	1.0	53	1.0	0.123	15.9	LOS B	8.0	5.8	0.86	0.84	0.86	48.9
Appro	oach	64	1.0	67	1.0	0.123	14.9	LOS B	8.0	5.8	0.86	0.84	0.86	48.9
West	: Road	2												
10	L2	117	1.0	123	1.0	0.712	4.7	LOS A	9.6	68.1	0.52	0.48	0.52	52.7
11	T1	655	1.0	689	1.0	0.712	4.9	LOS A	9.6	68.1	0.52	0.48	0.52	53.9
12	R2	222	1.0	234	1.0	0.712	9.5	LOS A	9.6	68.1	0.52	0.48	0.52	53.9
Appro	oach	994	1.0	1046	1.0	0.712	5.9	LOS A	9.6	68.1	0.52	0.48	0.52	53.8
All Vehic	eles	1748	1.0	1840	1.0	0.712	6.6	LOS A	9.6	68.1	0.58	0.56	0.58	53.5

Development Access along Road 2

MOVEMENT SUMMARY

Site: D [2031 AM Planned Road 2/ Pieter Koen Dev Access (Site Folder: General)]

New Site

Site Category: (None) Stop (Two-Way)

0106	(·~,,												
Vehic	cle Mo	vement	Perfor	mance										
Mov ID	Turn	INPU VOLUI [Total		DEMA FLO\ [Total		Deg. Satn	Aver. Delay	Level of Service		ACK OF EUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	
		veh/h	%	veh/h	%	v/c	sec		veh	m -				km/h
East:	Road 2	2												
5	T1	351	3.0	369	3.0	0.188	0.0	LOS A	0.0	0.4	0.02	0.01	0.02	59.9
6	R2	5	0.0	5	0.0	0.188	6.7	LOS A	0.0	0.4	0.02	0.01	0.02	57.6
Appro	ach	356	3.0	375	3.0	0.188	0.1	NA	0.0	0.4	0.02	0.01	0.02	59.8
North	: Devel	opment A	Access											
7	L2	10	0.0	11	0.0	0.344	9.6	LOS A	1.5	10.4	0.57	1.03	0.71	49.2
9	R2	185	0.0	195	0.0	0.344	12.8	LOS B	1.5	10.4	0.57	1.03	0.71	48.8
Appro	ach	195	0.0	205	0.0	0.344	12.7	LOS B	1.5	10.4	0.57	1.03	0.71	48.8
West:	Road	2												
10	L2	100	0.0	105	0.0	0.157	5.6	LOS A	0.0	0.0	0.00	0.21	0.00	56.5
11	T1	183	3.0	193	3.0	0.157	0.0	LOS A	0.0	0.0	0.00	0.21	0.00	58.0
Appro	ach	283	1.9	298	1.9	0.157	2.0	NA	0.0	0.0	0.00	0.21	0.00	57.5
All Ve	hicles	834	1.9	878	1.9	0.344	3.7	NA	1.5	10.4	0.14	0.32	0.17	56.1

MOVEMENT SUMMARY

Site: D [2031 PM Planned Road 2/ Pieter Koen Dev Access (Site Folder: General)]

New Site

Site Category: (None) Stop (Two-Way)

Otop	(1000	• • • •												
Vehi	cle Mo	vement	Perfor	mance										
Mov ID	Turn	INPU VOLUI [Total		DEMA FLO\ [Total		Deg. Satn	Aver. Delay	Level of Service		ACK OF EUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	
		veh/h	%	veh/h	%	v/c	sec		veh	m m				km/h
East:	Road 2													
5	T1	329	3.0	346	3.0	0.190	0.4	LOS A	0.2	1.7	0.08	0.02	0.08	59.3
6	R2	13	0.0	14	0.0	0.190	10.0	LOS B	0.2	1.7	0.08	0.02	0.08	57.1
Appro	ach	342	2.9	360	2.9	0.190	0.7	NA	0.2	1.7	0.08	0.02	0.08	59.2
North	orth: Development Access													
7	L2	9	0.0	9	0.0	0.545	14.1	LOS B	2.5	17.4	0.83	1.13	1.29	44.5
9	R2	175	0.0	184	0.0	0.545	21.2	LOS C	2.5	17.4	0.83	1.13	1.29	44.2
Appro	ach	184	0.0	194	0.0	0.545	20.9	LOS C	2.5	17.4	0.83	1.13	1.29	44.2
West	Road	2												
10	L2	252	0.0	265	0.0	0.387	5.7	LOS A	0.0	0.0	0.00	0.21	0.00	56.3
11	T1	443	3.0	466	3.0	0.387	0.1	LOS A	0.0	0.0	0.00	0.21	0.00	57.8
Appro	ach	695	1.9	732	1.9	0.387	2.1	NA	0.0	0.0	0.00	0.21	0.00	57.3
All Ve	hicles	1221	1.9	1285	1.9	0.545	4.6	NA	2.5	17.4	0.15	0.30	0.22	55.3