GEOTECHNICAL REPORT

FOR THE PROPOSED RESIDENTIAL DEVELOPMENT ON THE SUBDIVISION OF ERF 19374 GEORGE

1 July 2022

Revision 0

Prepared by: OUTENIQUA GEOTECHNICAL SERVICES PO BOX 964 KNYSNA 6570

Prepared for: URBAN FRONT DEVELOPERS HOMEWOOD ST HEATHER PARK GEORGE 6529

Ref No: 2022\Urban Front\Erf 19374 George\Report\Geotechnical Report 1.7.2022 Rev0

Report review history:

Revision No	Date	Prepared by:	Reviewed by:	Approved by:
	I.Paton Pr Sci Nat Pr Tech Eng		D Snyders Pr Sci Nat	I.Paton Pr Sci Nat Pr Tech Eng
0	0 1.7.2022	AL		ANL

Authors qualifications and affiliations:

lain Paton has a Bachelor's degree with Honours in Geology and a Master's degree in Geotechnical Engineering and has over 25 years' experience in the mining, energy and construction industries. Iain Paton is a registered Professional with the Engineering Council of South Africa (Pr Tech Eng #2019300500), the South African Council for Natural and Scientific Professions (Pr Sci Nat # 400236/07), and is a member of the South African Institute of Engineering and Environmental Geologists (SAIEG), the Geotechnical Division of the South African Institute of Civil Engineering (SAICE) and the Institute of Municipal Engineering of South Africa (IMESA).

Declaration of independence:

The author of this report is independent professional consultant with no vested interest in the project, other than remuneration for work associated with the compilation of this report.

General limitations:

- 1. The investigation has been conducted in accordance with generally accepted engineering practice, and the opinions and conclusions expressed in the report are made in good faith based on the information at hand at the time of the investigation.
- 2. The contents of this report are valid as of the date of preparation. However, changes in the condition of the site can occur over time as a result or either natural processes or human activity. In addition, advancements in the practice of geotechnical engineering and changes in applicable practice codes may affect the validity of this report. Consequently, this report should not be relied upon after an eclipsed period of one year without a review by this firm for verification of validity. This warranty is in lieu of all other warranties, either expressed or implied.
- 3. Unless otherwise stated, the investigation did not include any specialist studies, including but not limited to the evaluation or assessment of any potential environmental hazards or groundwater contamination that may be present.
- 4. The investigation is conducted within the constraints of the budget and time and therefore limited information was available. Although the confidence in the information is reasonably high, some variation in the geotechnical conditions should be expected during and after construction. The nature and extent of variations across the site may not become evident until construction. If variations then become apparent this could affect the proposed project, and it may be necessary to re-evaluate recommendations in this report. Therefore, it is recommended that Outeniqua Geotechnical Services is retained to provide specialist geotechnical engineering services during construction in order to observe compliance with the design concepts, specifications and recommendations and to allow design changes in the event that subsurface conditions differ from those anticipated prior to the start of construction. Any significant deviation from the expected geotechnical conditions should be brought to the author's attention for further investigation.
- 5. The assessment and interpretation of the geotechnical information and the design of structures and services and the management of risk is the responsibility of the appointed engineer.

Table of Contents

1.	Intro	oduction	.5
	1.1	Background information	. 5
	1.2	Scope of work	. 5
	1.3	Available information	.6
2.	Site	description	.6
3.	Met	hods of investigation	.7
4.	Resu	ults of the site investigation	. 8
	4.1	Regional geology	. 8
	4.2	Local soil & rock types	. 8
	4.3	Groundwater	. 10
	4.4	Laboratory tests	. 10
	4.5	Insitu tests	. 11
5.	Geo	technical assessment	11
	5.1	Terrain mapping units	. 11
	5.2	Bearing capacity and settlement	. 13
	5.3	Heave	. 13
	5.4	Groundwater and site drainage	. 13
	5.5	Slope stability	. 13
	5.6	Excavations	. 13
	5.7	Site classifications	. 14
6.	Reco	ommendations	15
	6.1	Earthworks	. 15
	6.2	Stormwater drainage	. 16
	6.3	Roads	. 16
	6.4	Foundations and floors	. 16
7.	Con	clusions	17

List of Appendices

Appendix 1 – Maps Appendix 2 – Soil profiles Appendix 3 – Lab test results Appendix 4 – DCP test results Appendix 5 - Calculations

1. Introduction

1.1 Background information

Outeniqua Geotechnical Services was appointed by Urban Front Developers to conduct a geotechnical site investigation for proposed new residential development on the subdivision of Erf 19374, George, situated ~3km northwest of the CBD of the city of George (see **Figure 1**). The geotechnical nature of the site was investigated to facilitate the engineering design of structural foundations and civil services.

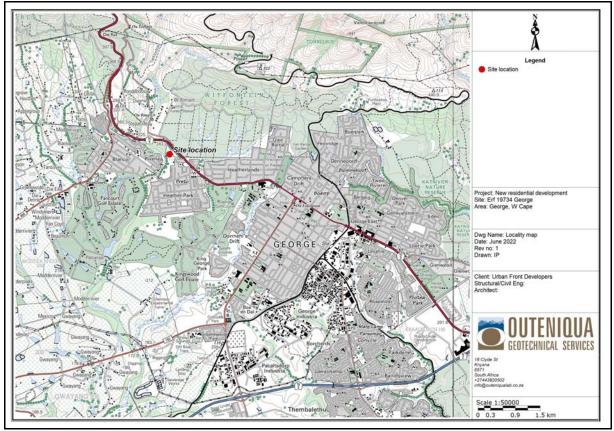


Figure 1: Locality map

1.2 Scope of work

The scope of work for the investigation was as follows:

Desk Study:

• Review all available information of the location, topography and geology of the site.

Site Work:

- Conduct a site walk over survey to assess the general terrain and any obvious geotechnical risks associated with development of the site;
- Excavate and profile 8 test pits to ~2.5m deep or refusal with a TLB;
- Collect soil samples for laboratory testing;
- Conduct DCP tests from natural ground level at each test position.

- 6 x Foundation Indicator tests;
- 4 x Mod AASHTO/CBR/Indicator tests;

Assessment report:

Preparation of a concise factual and interpretive report with an assessment of the geotechnical conditions and constraints, and recommendations on:

- Foundation design for structures (including founding depths, estimated allowable safe bearing pressures).
- Design of access roads, parking areas and civil services.
- Any other precautions to be taken with regards to the geotechnical conditions for the proposed development.

1.3 Available information

The following maps & plans were available for consultation:

- 1:250 000 Geological map of the area, obtained from the Council for Geoscience.
- Topo-cadastral data for the area, obtained from the National Geospatial Institute (NGI).
- Aerial photos of the area, obtained from the NGI and Google Earth.
- Site layout plans obtained from Urban Front Developers.

2. Site description

The site was situated just north of the residential area of Heather Park in George. At the time of the investigation the site was vacant and was easily accessible via the existing municipal roads leading to the southern and eastern boundaries of the site (see Figure 2). The vegetation consisted of long grass and medium sized bushes and some large trees along the western and eastern boundaries (Figure 3). The topography was described as very gentle but becoming steep along the western boundary, which falls downward towards the Malgas River which runs along this boundary, flowing in a southerly direction.

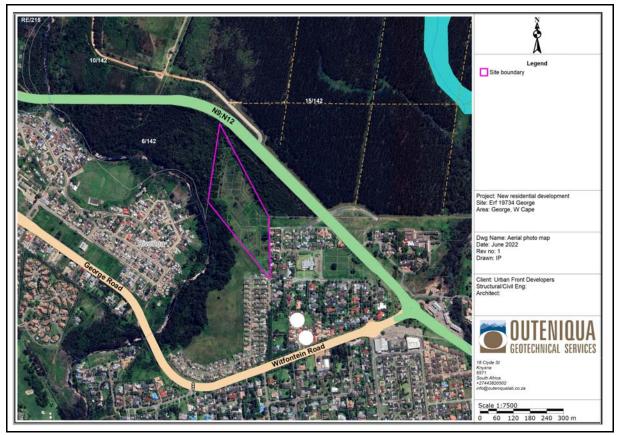


Figure 2: Aerial photo map of site

Figure 3: View of the typical terrain and vegetation on the central part of site

3. Methods of investigation

An initial site walk-over of the site was conducted to assess the site terrain, any remarkable topographic features and any obvious geotechnical issues. This was followed by a subsurface investigation consisting of eight test pits, excavated at randomly-spaced positions around the site with a TLB/backactor, in order to observe and record the general soil profile of the site. The soil profiles and photographs of the test pits were

included in Appendix 2 of this report.

Representative samples of different soil types were collected from test pits for Foundation Indicator tests and Mod/CBR/Indicator tests. The tests were performed at a SANAS-Accredited laboratory (Outeniqua Lab), in accordance with the SANS 3001 and ASTM methods. Details of the tests were included in **Appendix 3** of this report.

In situ dynamic cone penetrometer (DCP) tests were conducted at each test pit position to investigate soil consistency and bearing capacity. Details of the tests were included in **Appendix 4** of this report.

4. Results of the site investigation

4.1 Regional geology

The 1:250 000 geological map indicated that the site was underlain by schist and hornfels of the Saasveld Formation of the Kaaimans Group, which had been intruded by granite of the George pluton to the south of the site (**Figure 4**). The risk of seismic activity in the areas was low.

The geology of the site was generally considered suitable for urban development purposes with due consideration to local geotechnical constraints.

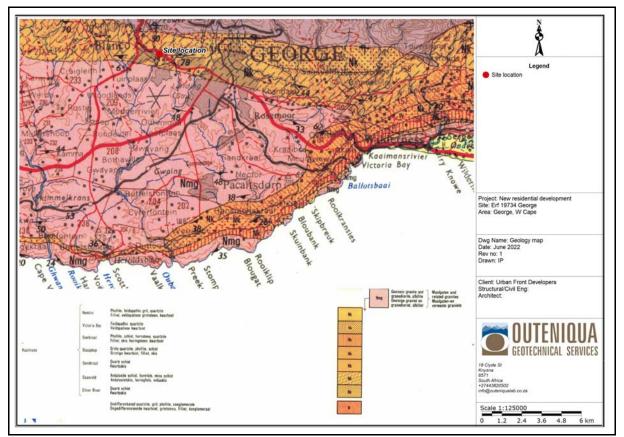


Figure 4: Geological map of site

4.2 Local soil & rock types

The test pits revealed a variable soil profile but was generally described as an assemblage of fine-grained colluvial soils, including clayey silt and fine sand with sporadic gravel, overlying a sporadic pedogenic horizon (ferricrete nodules in clayey

sandy matrix), which was then underlain by clayey sandy gravelly residual soil derived from the complete weathering of the underlying feldspathic sandstone or hornfels. The underlying rock was only encountered in a few of the pits. The general soil profile was recorded as follows:

- > 0-500mm: Moist to very moist, dark brown, soft to firm, intact, clayey silt with abundant roots (topsoil).
- > 500-900mm: Moist, light brown, medium dense, intact, silty fine sand, colluvium.
- 900-1100mm: dark red orange, medium dense, pinholed & voided, clay & sandy gravel (ferricrete), pedogenic.
- 1100-2000mm: Moist, mottled light brown & dark red orange, stiff, microshattered & slickensided, silty clay with scattered gravel & cobbles, residual (completely weathered feldspathic sandstone – see Figure 5).
- > >2000mm: Blotched grey & red orange, highly to completely weathered, highly fractured, soft rock, feldspathic sandstone/hornfels.

Figure 5: Active residual clay extracted from test pits

A summary of the soil types and thicknesses is given in **Table 1**.

TP No.	Imported (fill)	Transported	Pedogenic	Residual	Rock	Total depth of test pit	Refusal
TP1	-	0-700	700-1200	1200-2800	-	2800	Slow
TP2	-	0-600	600-1000	1000-2000	2000-2200	2200	Rock
TP3	-	0-1000	-	-	1000-1100	1100	Rock
TP4	-	0-700	-	700-2500	2500-2600	2600	Rock
TP5	-	0-900	900-1100	1100-2100	-	2100	Slow
TP6	-	0-800	800-1000	1000-2700	-	2700	-
TP7	-	0-700	700-1100	1100-2500	-	2500	Slow
TP8	-	0-1000	-	1000-2600	-	2600	-

 Table 1: Summary of test pits with soil types and horizon depth intervals (in mm)

4.3 Groundwater

No significant groundwater tables were encountered in any test pits. Slight seepage was noted in TP5.

4.4 Laboratory tests

Representative samples of the different soil types were collected for Foundation Indicator tests to determine the particle size distribution (grading) and Atterberg limits. The results of the Foundation Indicator tests are shown in **Table 2**.

Test Pit	Pit Depth				Particle Analysis (%)				MC*	PE**	USC
No	(mm)	PI	LL	LS	Clay	Silt	Sand	Gravel			* * *
TP1	700-1200	16	44	8	7	3	10	80	12.1	LOW	GW- GM
TP3	500-1000	4	24	2	15	12	33	40	8.2	LOW	GM- GC
TP4	700-2000	26	70	13	40	11	30	19	33.8	MED	MH
TP6	0-800	5	21	3	15	25	52	8	17.2	LOW	SM- SC
TP7	1100-2500	4	23	2	22	15	34	29	10.5	LOW	SM- SC
TP8	1000-1700	25	50	13	42	19	38	1	23.0	HIGH	CL- CH

Table 2: Summary of Foundation Indicator test results

* Insitu Moisture Content ** Potential Expansiveness *** Unified Soil Classification

The lab results indicated that the insitu soils were highly variable in terms of texture and plasticity but generally containing appreciable fines (silt and clay) with a medium to high plasticity. Most of the samples displayed an overall low potential expansivity but a few of the samples taken from pits on the eastern side of the site (TP4 & TP8) displayed a medium to high potential for expansion.

The soils were classified into the following groups under the Unified Soil Classification (USC) system:

- MH Inorganic elastic silts.
- CH Inorganic clays of high plasticity.
- CL Inorganic clays of low to medium plasticity.

- GW Well graded gravels.
- GC Clayey gravels.
- GM Silty gravels.
- SM Silty sands.
- SC Clayey sands.

Representative samples of insitu soil were also collected for Modified AASHTO density, CBR, and Road Indicator tests to determine the potential for use as a natural roadbed or fill material in road pavements or under surface bed floors. The results of the tests were summarised in **Table 3**.

Test Sample Pit Depth		CBR at					Swell (%)	РІ (%)	GM	MDD/ OMC	COLTO
No	(mm)	100%	98 %	95%	93%	90%	(10)				
TP1	700-1200	53	36	20	13	7	0.1	16	2.55	2410/14.1	-
TP3	500-1000	56	37	21	14	8	0.1	4	1.54	2032/10.3	-
TP6	0-800	17	13	9	7	5	0.6	5	0.68	2084/8.2	-
TP7	1100-2500	50	33	18	12	6	0.1	4	1.17	2120/9.7	G7

Table 3: Summary of CBR test results

The test results indicated that the insitu soil were typically low quality and unsuitable for construction purposes (not classified in terms of COLTO), although sporadic horizons of slightly better (marginal) quality material was identified. Further recommendations were given in **Chapter 6**.

4.5 Insitu tests

The DCP tests indicated a generally loose/soft soils in the upper 0.8m, which broadly correlated to the transported horizons, but the tests consistently improved below this depth to medium dense or dense consistency. The tests indicated allowable bearing capacities in the range of 125-150kPa below a nominal founding depth of 0.8m.

5. Geotechnical assessment

5.1 Terrain mapping units

The site was broadly mapped into separate "Terrains" according to the dominant geotechnical constraints and each terrain was classified according to the residential site class designations provided under SANS10400-H (**Table 4**), which were discussed in the following chapters. The mapping was presented in **Figure 6**. The majority of the site was mapped as "Terrain 1" which was dominated by potentially active clays, compressible soils and low slope gradients. The western portion of the site, mapped as "Terrain 2", was classified separately due to the presence of moderate to steep slopes and relatively shallow rock, which had a mitigating effect on total soil movements.

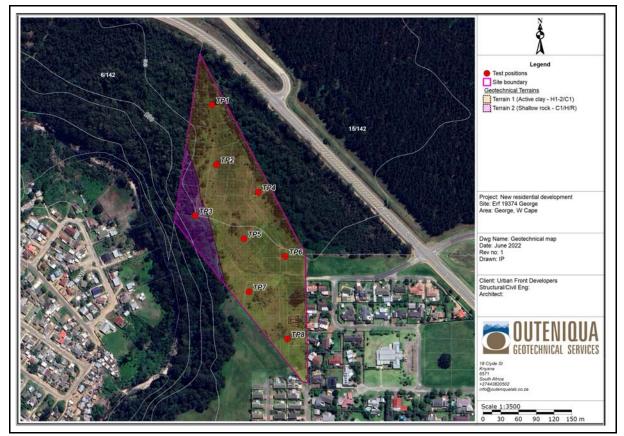


Figure 6: Geotechnical map of site

Table 4: Residential site class designations of single and double storey Type 1
masonry buildings

Typical founding material	Nature of founding material	Expected range of total soil movements	Assumed differential movement	Site class designation		
Rock (excluding mud rocks which might exhibit swelling to some depth)	Stable	mm Negligible	% of total _	R		
Fine-grained soils with moderate to very high plasticity (clays, silty clays, clayey silts and sandy clays)	Expansive soils	< 7,5 7,5 to 15 15 to 30 > 30	50 50 50 50	H H1 H2 H3		
Silty sands, clayey sands, sands, sandy and gravelly soils	Compressible and potentially collapsible soils	< 5 5 to 10 > 10	75 75 75	C C C C C C C C C C C C C C C C C C C		
Fine-grained soils (clayey silts and clayey sands of low plasticity), sands, sandy and gravelly soils	Compressible soils	< 10 10 to 20 > 20	(50) 50 50	S 51 52		
Contaminated soils ^a , controlled fill, dolomite land, landslip, landfill, marshy areas, mine waste fill, mining subsidence reclaimed areas, uncontrolled fill, very soft silts/silty clays	Variable	Variable	<u>}</u> -	Pp		
NOTE 1 A composite description is more appropriate to describe a site more fully, for example, C1/H2 or S1 or H2 (or both). Composite site classes might lead to higher differential movements and result in design solutions appropriate to a higher range of differential movement, for example, a class R/S1 may be described as a class S2 site. Alternatively, a further site investigation might be necessary as the final design solution might depend on the location of the housing unit on a particular site.						
NOTE 2 Where it is not possible to provide a single site designation and a composite description is inappropriate, sites may be given multiple descriptions to indicate the range of possible conditions, for example, H1-H2 or C1-C2.						
NOTE 3 Soft silts and clays usually exhibit high consolidation and low bearing characteristics. Structures founded on these horizons might experience high settlements and such sites should be designated as class S1 or S2, as relevant and appropriate.						

5.2 Bearing capacity and settlement

The uppermost soil horizons across the entire site (0-0.8m depth range) were typically loose with low bearing capacity. The underlying dense pedogenic or residual horizons were generally considered as a suitable founding horizon for single or double storey residential structures. A reasonably conservative calculation of safe bearing capacity of a standard strip foundation under the assumed conditions was 145kPa (see **Appendix 5**) with less than 10mm anticipated settlement (immediate or collapse-induced). The entire site was classified according to SANS 10400-H as C1 – See **Table 4**.

5.3 Heave

The heave potential of the insitu soils was found to be highly variable, and although calculations generally indicated higher potential on the eastern side of the site, this may vary significantly between test positions. Preliminary calculations of heave according to the Van der Merwe method (See **Appendix 5**) indicated a maximum heave of 23mm in Terrain 1, and although this was likely to be conservatively applied to the entire terrain, any variation within this area would be difficult to predict on a higher resolution, given the variability of the soil. Terrain 1 was thus classified according to SANS 10400-H as as H1-H2. Terrain 2, due to the presence of shallow rock, was classified with a significantly lower potential, not likely to exceed 7.5mm total heave (Class H).

5.4 Groundwater and site drainage

No significant groundwater tables were observed in any of the test pits, so foundation buoyancy was not considered to affect the design. Minor transient seepage was noted in one pit, and thus expected to occur seasonally throughout the profile at random levels.

The natural slope of the site was gently sloping, draining in a southwesterly direction into the Malgas River.

5.5 Slope stability

The majority of the site was very gently sloping with no global stability problems anticipated. Steep terrain forming the river banks along the western boundary was expected to be less stable under certain conditions, but due to the presence of shallow rock in this area, this generally had a positive effect on the stability.

5.6 Excavations

Excavations were classified according to SABS1200D as per **Table 5**.

Terrain	Soft excavations	Hard excavations
1	0-2m	>2m
2	0-1m	>1m

Table 5: Classification of excavations

Sidewalls of test pits were generally marginally stable for short periods, but the top 0.5m (topsoil) was unstable, requiring battering to 45°.

5.7 Site classifications

The site was mapped and classified according to the residential site designations provided under SANS10400-H (refer to **Table 6**).

Terrain unit	Geotechnical Constraint	Soil Class	Total expected heave (mm)	Total expected settlement (mm)
Terrain 1	Compressible and/or collapsible soils	C1	-	5-10
	Active soil	H1-2	7.5-30	-
	Compressible and/or collapsible soils	C1		5-10
Terrain 2	Active soil	Н	<7.5mm	
	Shallow rock	R		

 Table 6: Residential site designations

A summary of geotechnical constraints that potentially may affect the development of the site was tabulated in **Table 7**.

Geotechnical Constraint	Effect on the proposed development	Severity	Comment
Collapsible and/or compressible soil	Soil horizons with a potentially collapsible and/or compressible fabric which may affect stability of foundations	Medium	Underlying fine grained insitu soils may be compressible and/or display some minor collapse potential.
Differential settlement	Foundations placed in different soil types or rock may settle differentially.	Medium	In situ soil profile was highly variable
Bearing capacity	Foundations placed on soils with low bearing capacity will display unsuitable settlement.	Medium	Bearing capacity unlikely to be a problem for normal single-double storey structures founded on insitu soils, but heavier structures may require special consideration
Groundwater	Seepage, permanent or perched water tables affecting excavations.	Low	No significant groundwater tables were encountered at the time of the investigation
Active soil	Heaving clays affecting foundation stability	Medium - High	Insitu soils exhibited medium to high potential expansivity
Excavations	Boulders or rock affecting excavations Unstable excavations requiring shoring	Low	Soft excavations expected to a depth of 2m over most of the site
Slope stability	Geological instability causing damage to structures founded on slopes	Low	Slope gradient of the site is very gentle, becoming steeper along the western boundary
	Soil creep or erosion by storm water	Low	Erosion unlikely to pose a significant threat but contractors should monitor erosion from site.
Flood potential	Low lying areas affected by poor drainage.	Medium	Site had low gradient and low soil permeability. Storm water management solutions would be required
Uncontrolled fill	Uncontrolled fill material affecting earthworks and foundations	Low	Very minor fill horizon detected
Sources of construction material	Suitability of insitu soils for use as natural construction material affecting cost of importation of material	Medium- high	The insitu soils are generally unsuitable for use as natural construction purposes. All selected fill material will need to be imported
	Distance to sources of construction material affecting costs	Low	Commercial sources of better material are readily available in the area.

 Table 7: Assessment of potential geotechnical constraints

6. Recommendations

The design of foundations and engineering services is the structural and civil engineer's responsibility. The following recommendations are based on limited information gained from the site investigation and although the confidence in the information is high, some variations can occur between information points. All geotechnical information must be confirmed during the construction process and any significant variations are to be brought to the attention of the authors for comment or further recommendations. It is recommended that the structural engineer discuss his/her conceptual design with the geotechnical specialist to ensure that any calculations and recommendations are in line with current thinking.

6.1 Earthworks

It was recommended that the site be cleared of vegetation and the top 150mm grubbed of topsoil and roots and carted to spoil or stockpiled on site for landscaping purposes. Any existing superficial fill material, such as rubbish/rubble that may exist on the site should be cut to spoil. Soil obtained from bulk earthworks and excavations is unlikely to be suitable for re-use as load-bearing fill material, but any potentially suitable material should be stockpiled and approved by the engineer before being used.

For deep excavations up to 2m, e.g. for gravity sewers, the upper 1m should be battered to a safer angle of 45°.

6.2 Stormwater drainage

Infiltration into the soil will generally be low and restricted by fine grained soils of low permeability and a significant portion of rainfall will end up as run-off or standing water. A well-planned road layout can assist with storm water management. Raised barrier kerbs, mountable or semi-mountable kerbs along roads are recommended in order to channel storm water along roads and prevent over-topping into erven. The ponding of storm water around the exterior of houses can be avoided by shaping the ground levels around the exterior to create a fall away from the house and constructing a 1m wide a concrete apron with a 10% fall away from the house. This will also assist in maintaining ground moistures stable. The finished floor level of all houses should be a minimum of 150mm above final ground level to prevent flooding.

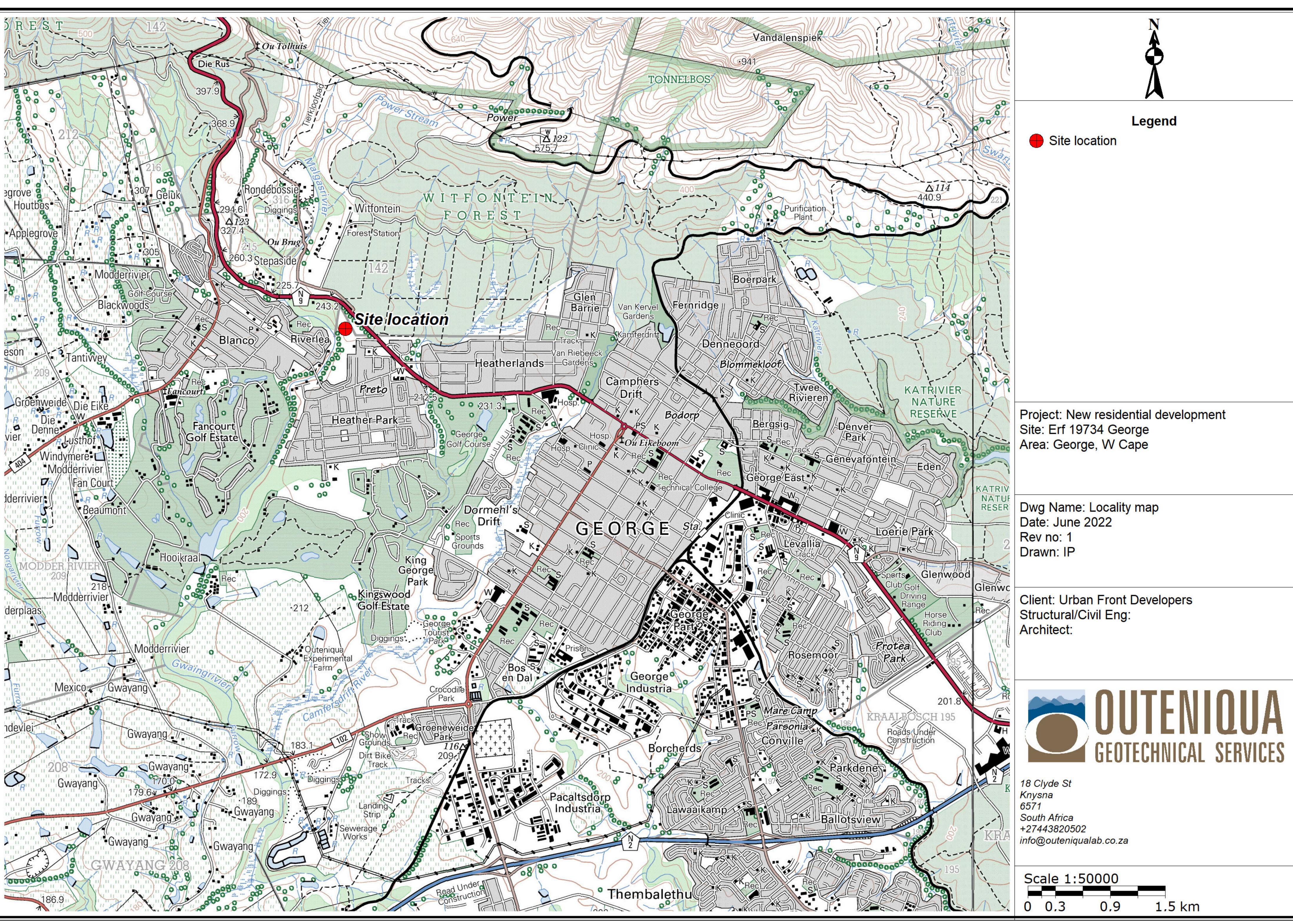
6.3 Roads

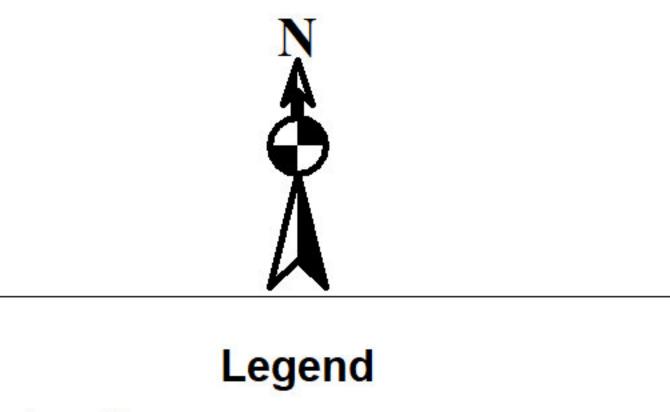
For access roads and parking areas, it is recommended that allowance is made for importation of selected subgrade material of at least G7 quality to improve the road subgrade, below the conventional road layerworks (subbase/base layers). The recommended layerworks are given in **Table 6**.

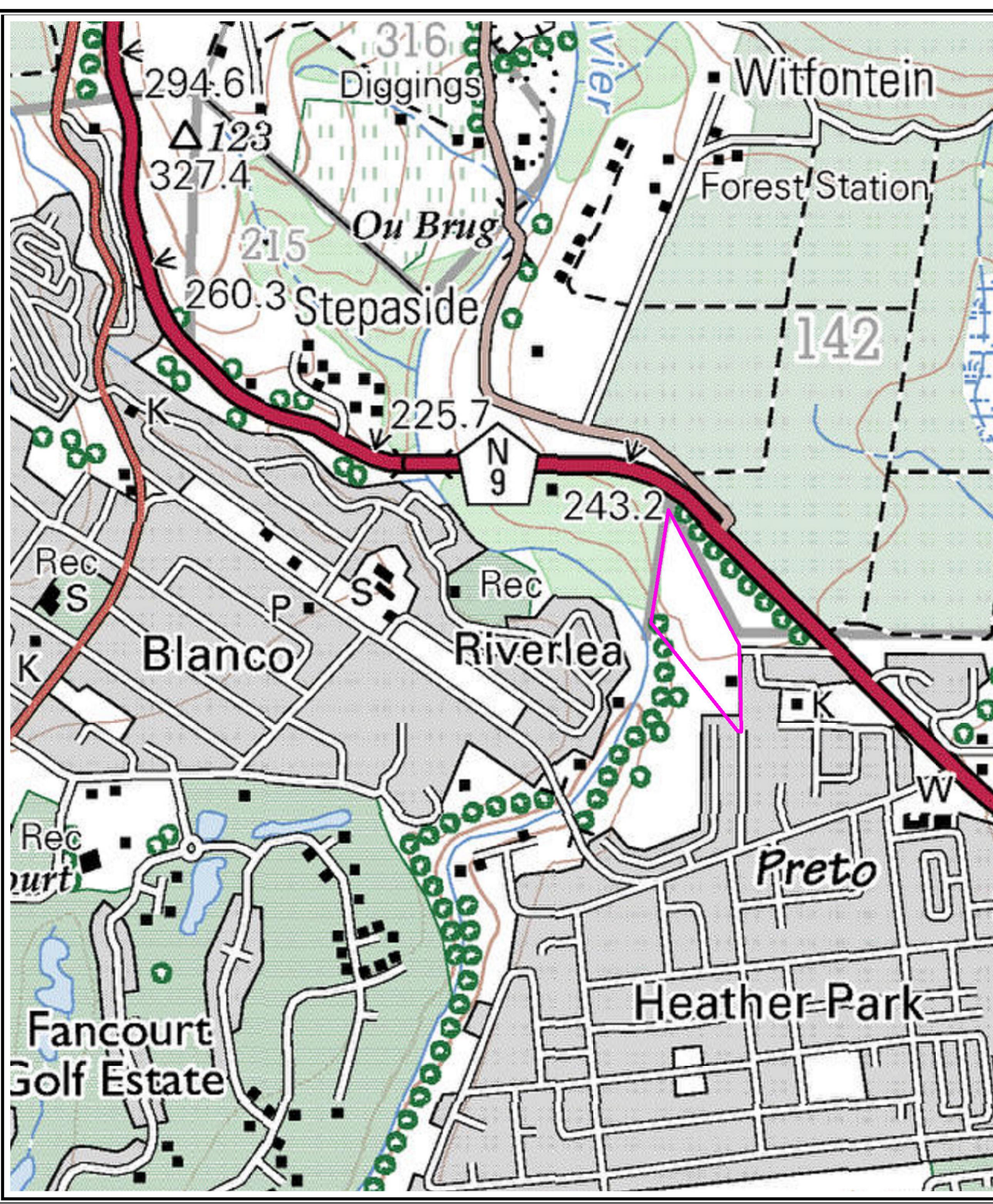
Layer	Material	Thickness	Required Compaction
Pavers*	Cement interlock paving on 25mm sand bedding	80 mm	
Subbase	Imported G4/5 crushed rock	150mm	95% MDD
SSG	Imported G7 gravel	150-300mm	93% MDD
		OR	
Seal	13.2mm Cape Seal or 40mm HMA		
Base course	Imported G1/3 crushed rock	150mm	98% MDD
Subbase	Imported G4/5 crushed rock	150mm	95% MDD
SSG	Imported G7 gravel	150-300mm	93% MDD

 Table 6: Pavement design recommendations

6.4 Foundations and floors

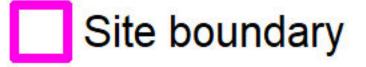

A preliminary recommendation for foundations for single to triple storey masonry structures is well reinforced concrete strip or pad foundations, founded at a minimum recommended depth of 0.8m on stiff/dense <u>insitu</u> soils with a maximum recommended bearing pressure of 145kPa. Additional engineering of the founding conditions below footings can be considered to mitigate heave and settlement, such as placing a layer of compacted G5 crushed rock below footings (recommend minimum 0.15m, compacted to 95%MDD). This will also facilitate better foundation trench preparation during wet weather periods. Alternative systems, such as raft foundations can also be considered as highly suitable. Ground conditions and foundation designs should be verified on site during earthworks.


RC surface bed floors should be supported on at least 0.3m of well compacted imported crushed rock or inert natural gravel, compacted to 95%MDD.

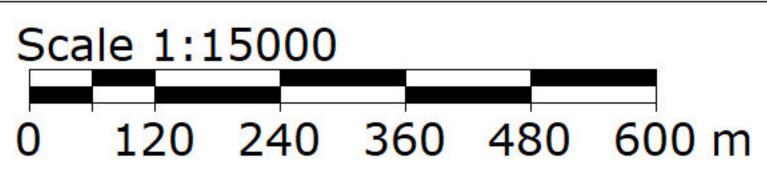

7. Conclusions

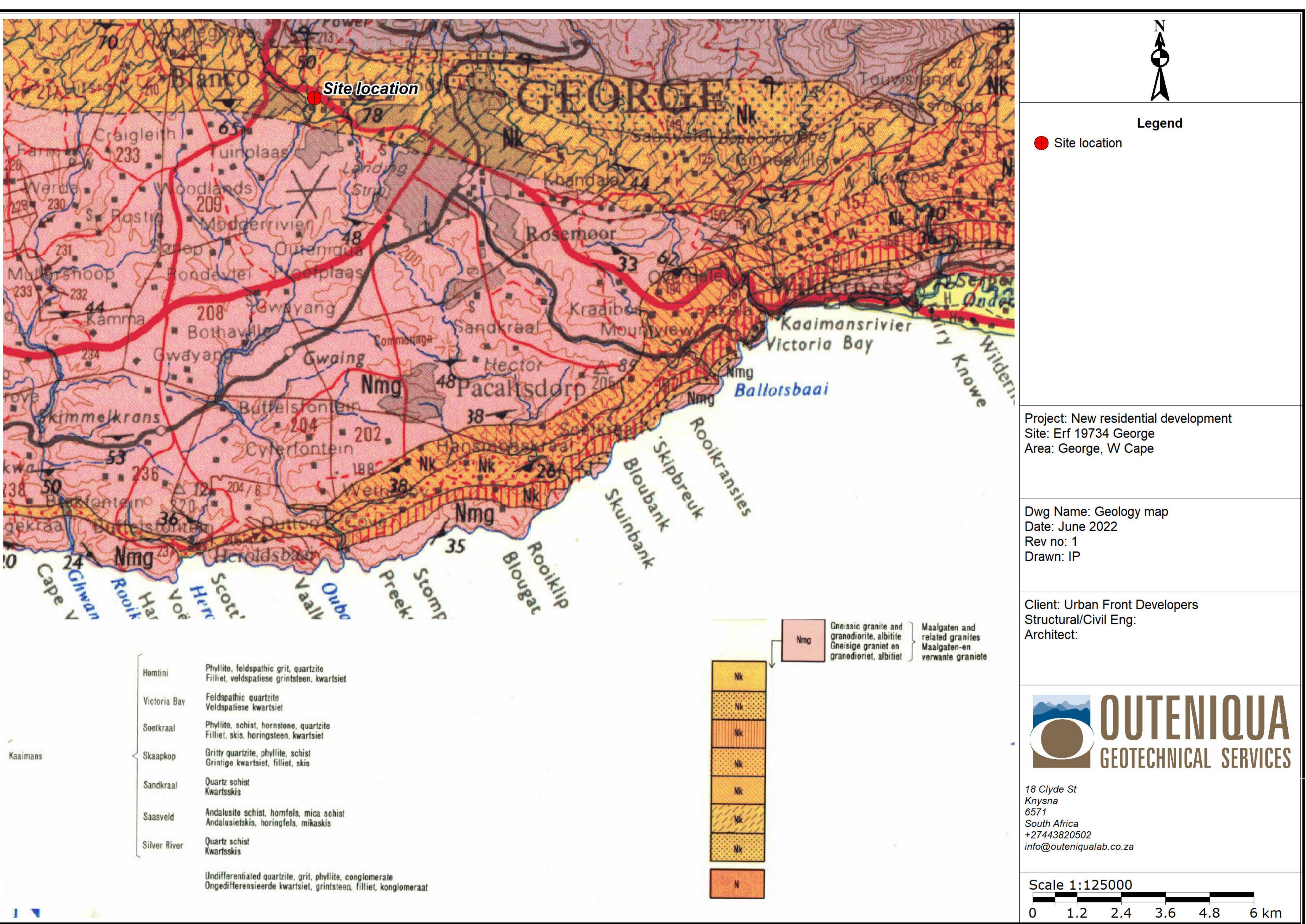
The site is generally suitable for the proposed development in terms of the geology but there are some geotechnical constraints which may have an effect the engineering design. Some preliminary precautionary measures have been recommended for consideration by the design engineers to cater for the expected conditions, but all information should be verified on site during construction. Appendix 1

Maps

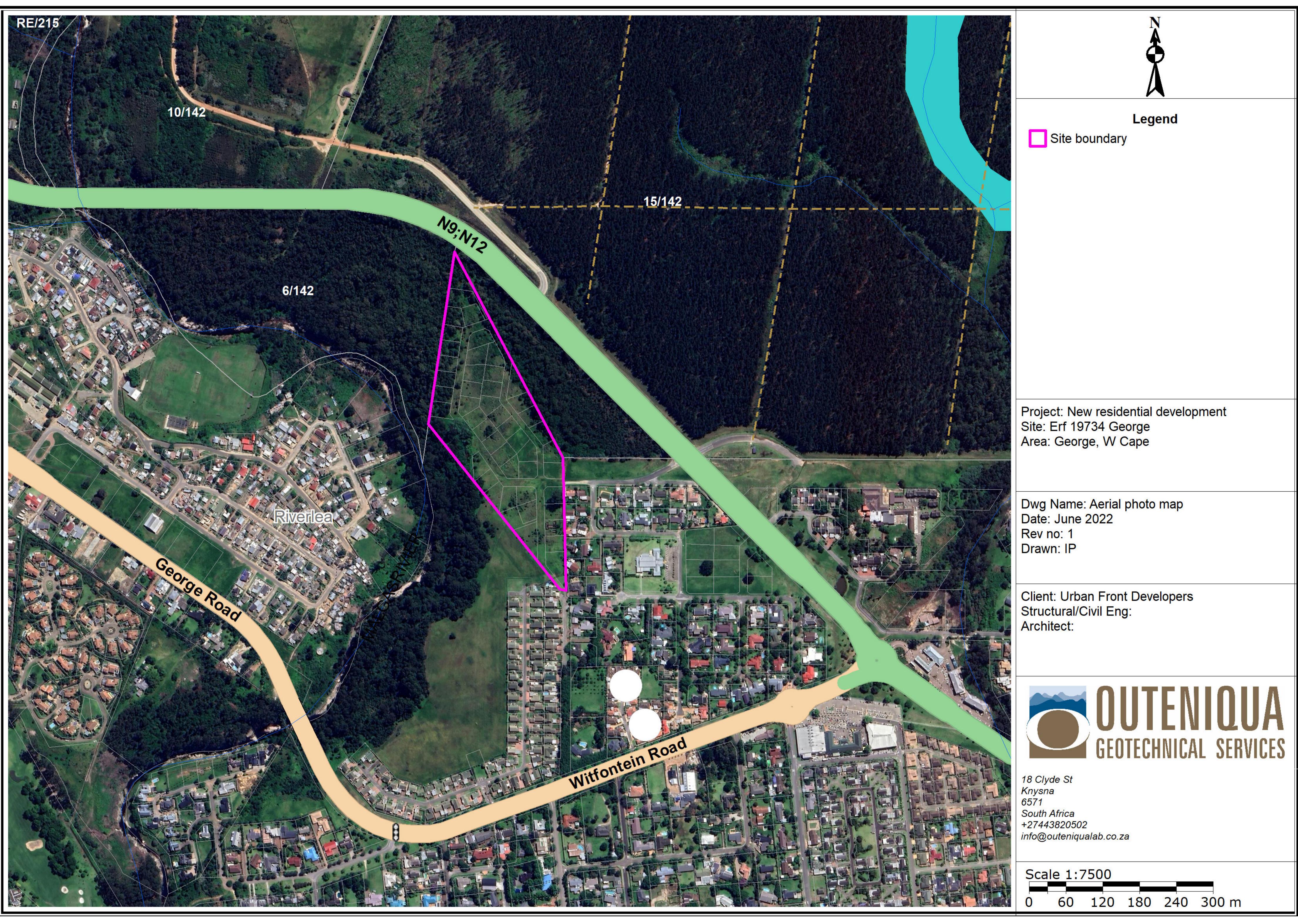


I FIO F O/R-J Section 1 M_{2} не LIN 1-200 00,23 O 0 0 18 Clyde St Knysna 6571 00 George Golf/Course O G AFT

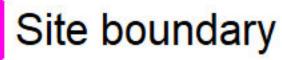

Project: New residential development Site: Erf 19734 George Area: George, W Cape

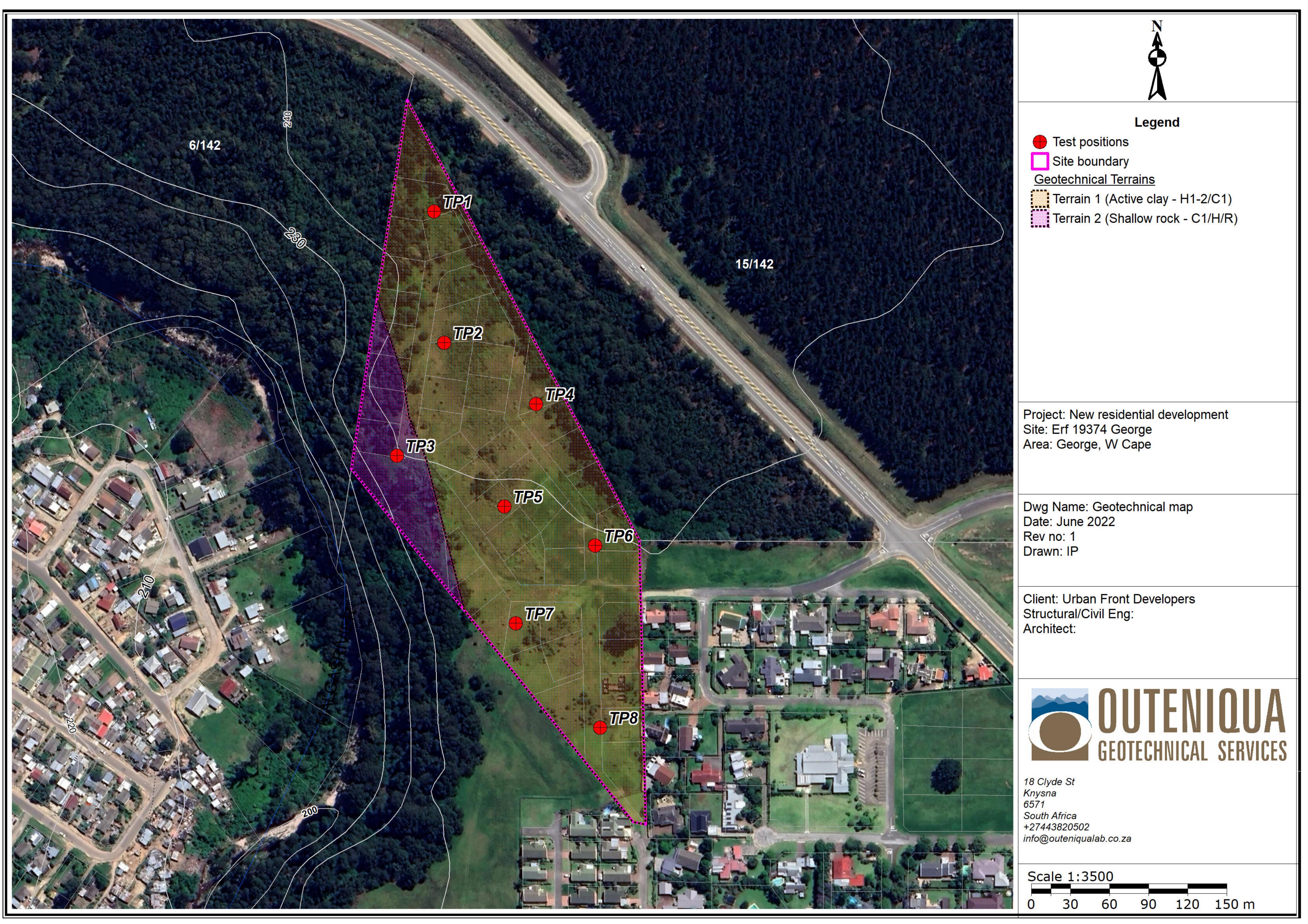

Dwg Name: Topographical map Date: June 2022 Rev no: 1 Drawn: IP

Client: Urban Front Developers Structural/Civil Eng: Architect:

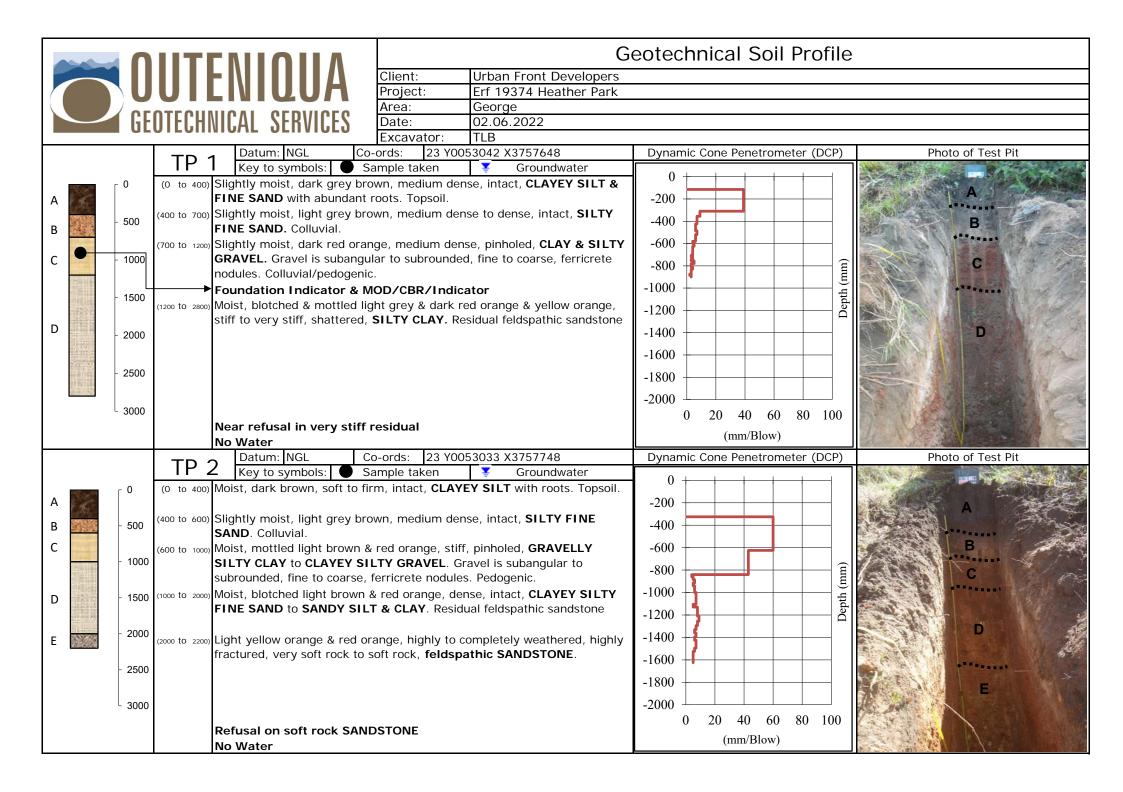


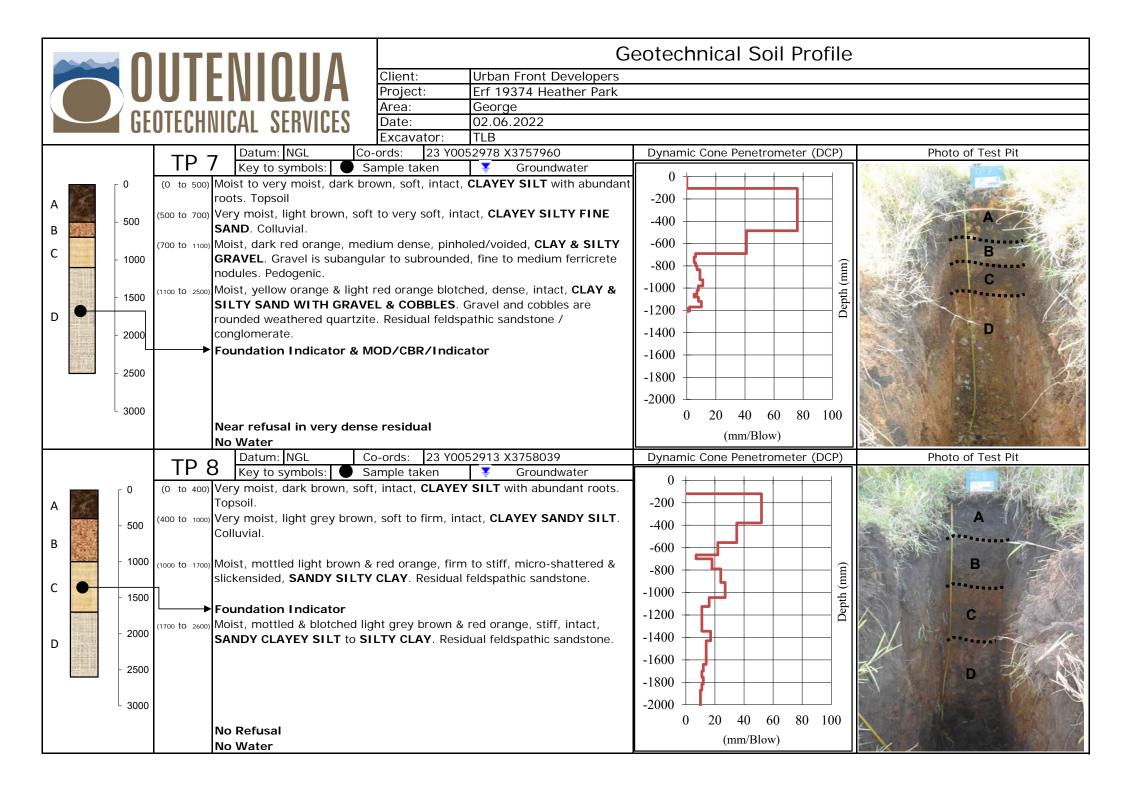
South Africa +27443820502 info@outeniqualab.co.za



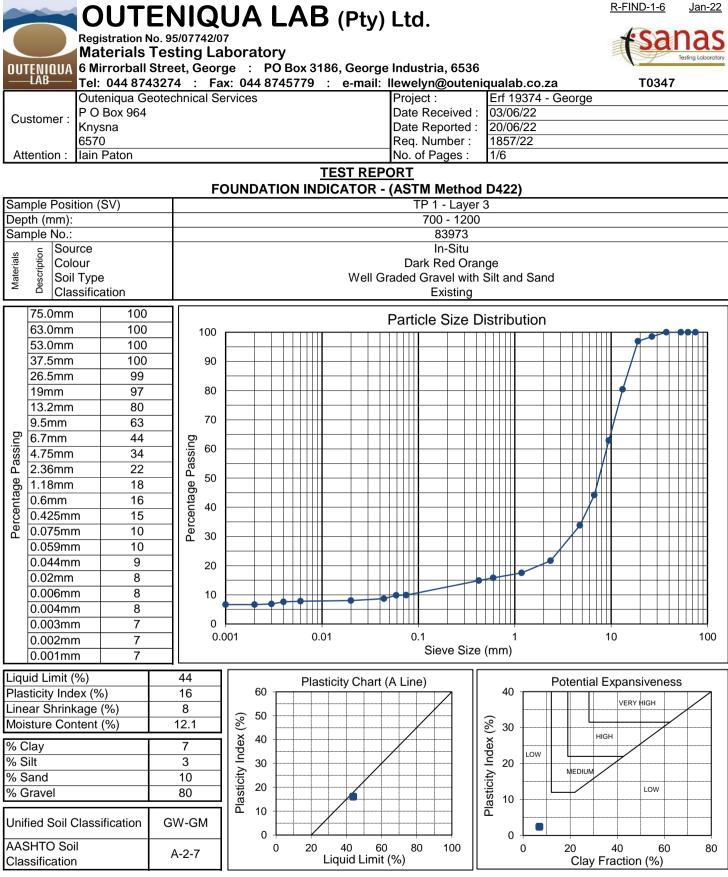


Homtini
Victoria Bay
Soetkraal
Skaapkop
Sandkraal
Saasveld



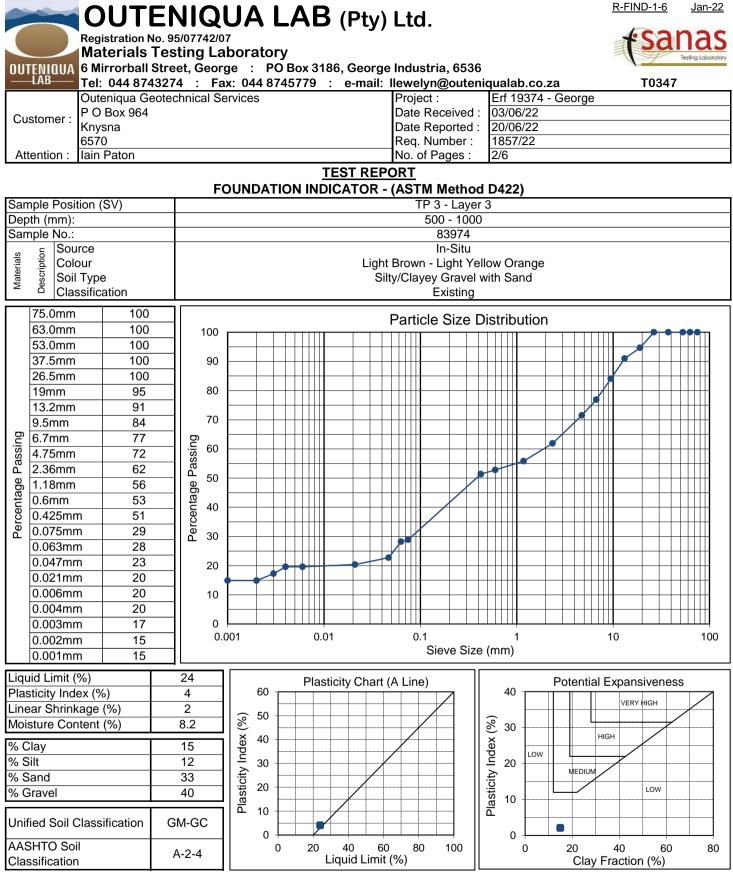

Appendix 2

Test pit profiles


				Geotechnical Soil Profile						
GEOTECHNICAL SERVICES				Client: Urban Front Developers						
				Project:						
				Area:	George					
	a GF	NTFCHN	ICAL SERVICES	Date:	02.06.2022					
			IOAL OLIMIOLO	Excavator:	TLB					
			Datum: NGL Co-	-ords: 23 Y00	53069 X3757834	Dynamic Cone Penetrometer	(DCP)	Photo of Test Pit		
		TP 3	•	ample taken	Sroundwater			TP 3		
1000	<mark>ر 0</mark>		Slightly moist, dark brown, l		YEY SILTY FINE SAND	0				
A	- 200		vith roots & scattered rubble			-200				
00000000			Slightly moist to moist, dark			-400		A		
В	- 400		SILTY SANDY GRAVEL. Gr	•	ar to subrounded, fine to					
	- 600	-	coarse ferricrete nodules. Co			-600				
c •	- 800		Slightly moist, light brown & Jense, intact, GRAVEL & CO			-800				
	- 800		highly to completely weather			-1000				
D	- 1000		andstone. Gravel is quartz.		soft fock qualizitie		Depth (mm)	C C		
	- 1200		Foundation Indicator & M		ator	-1200	De D			
		-	ight brown & light yellow or			-1400				
	- 1400		completely weathered, highl			-1600				
	- 1600		eldspathic SANDSTONE	, , , , , , , , , , , , , , , , , , ,						
	4000		-			-1800		and the second second second		
	- 1800					-2000				
	L 2000					0 20 40 60 80	100			
		F	Refusal on soft rock sand	stone		(mm/Blow)		1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
-		7	No Water			. ,				
		TP 4			52963 X3757794	Dynamic Cone Penetrometer	(DCP)	Photo of Test Pit		
					Groundwater	0 +	—	THE PARTY AND A PARTY		
5.8	⁰		Aoist, dark brown, soft to fir Fopsoil.	rm, intact, CLAY I	EY SILT with abundant roots.	-200				
A			1	dium donco into	t, CLAYEY SILT with some			A		
В	- 500		ine ferricrete nodules at bas		a, CLAYEY SILT with some	-400	┓┤ │			
1 () () ()			Noist, mottled light brown &		micro-shattered SILTY	-600		В		
	- 1000		CLAY. Residual feldspathic s							
			oundation Indicator			-800				
С	- 1500					-1000		C		
6.000	1000					-1200	Depth			
	0000	(2000 to 2500) Moist, mottled grey & red or	ange & yellow orange, stiff to very e, shattered, CLAYEY SILT to SILTY CLAY.							
12040	- 2000				-1400		the states in the the			
D			Residual feldspathic sandsto			-1600	I			
1495.03	- 2500		Blotched grey & red orange							
		v	veathered, highly fractured,	, soft rock, felds	pathic SANDSTONE.	-1800				
	3000			DOTONIC		-2000		E		
			Refusal on soft rock SANE	DETONE		0 20 40 60 80	100			
1			Sidewalls stable			(mm/Blow)				
			No Water			(IIIII/DIOW)	1	A CONTRACT OF A		

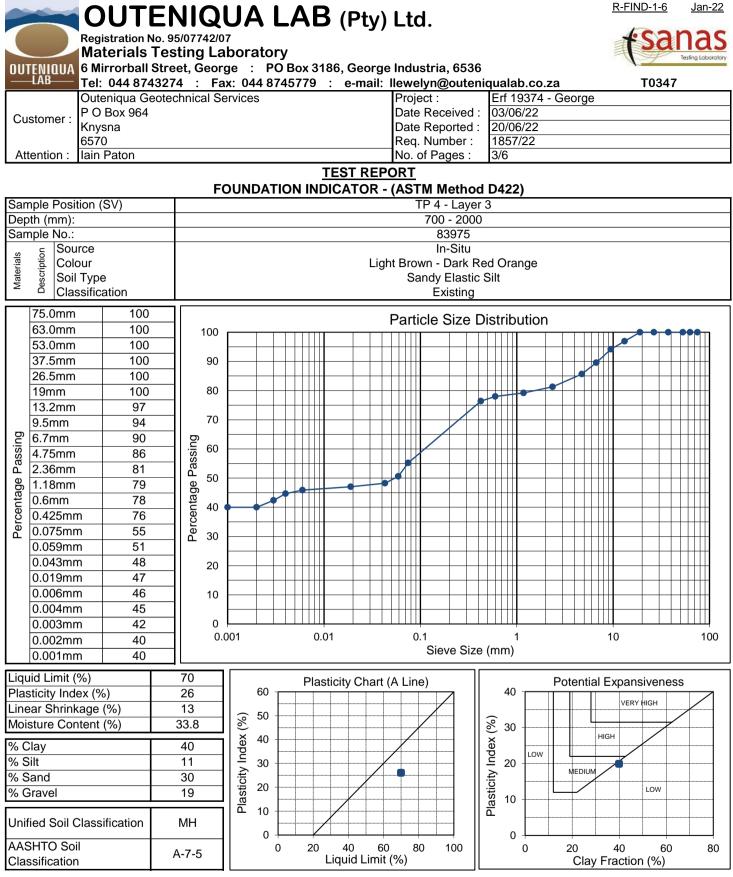
			Geotechnical Soil Profile					
			Client: Urban Front Developers					
GEOTECHNICAL SERVICES			Project: Erf 19374 Heather Park					
	105		Area: George					
	l lit	UIECHNICAL SERVICES	Date: 02.06.2022					
			Excavator: TLB					
			-ords: 23 Y0052987 X3757872	Dynamic Cone Penetrometer (DCP)	Photo of Test Pit			
				0 + + + + + + + + + + + + + + + + + + +				
	⁰	(0 to 500) Very moist, dark brown, soft roots. Topsoil.	t to firm, intact, CLAYEY SILT with abundant	-200				
A			dense, intact, SILTY FINE SAND. Colluvial.					
12203.00	- 500			-400				
В		(900 to 1100) Moist, dark red orange, med	lium dense, pinholed & voided, CLAY &	-600				
с	- 1000		subangular to subrounded, fine to medium,	-800				
D		ferricrete nodules. Pedogenio	С.					
20.28.20	- 1500		ange & yellow orange, stiff, shattered, SILTY	-1000	C			
E	1000	CLAY. Residual feldspathic s		-1200	3.5			
1.2.2			e & red orange, dense to very dense, intact,	-1400	D			
机加速的	- 2000) with occasional rounded quartz pebbles.					
		Residual feldspathic sandsto	ne.	-1600				
	- 2500			-1800				
				-2000				
	3000	Near refusal in very dense	e residual	0 20 40 60 80 100				
			8m. Possibly old excavation					
			n bottom of backfilled section.	(mm/Blow)	A A A A A A A A A A A A A A A A A A A			
			o-ords: 23 Y0052918 X3757901	Dynamic Cone Penetrometer (DCP)	Photo of Test Pit			
			· · · · · · · · · · · · · · · · · · ·	0 + + + + + + + + + + + + + + + + + + +				
3.8	0		m, intact, CLAYEY SILT with abundant roots.	200	San Takes and her and he			
A		Topsoil.	to stiff, intact, SILTY CLAY. Colluvial.	-200				
	- 500			-400				
B	L	Foundation Indicator & M	IOD/CBR/Indicator	-600				
C	- 1000	(800 to 1000) Moist, dark red orange, med	lium dense to dense, pinholed/voided, SILT &	-800				
			subangular to sub rounded fine to medium					
D	- 1500	ferricrete nodules. Pedogenio		-1000				
		0	& dark red orange, stiff, shattered, SILTY	-1200 -1200				
	- 2000	CLAY. Residual feldspathic s		-1400				
-			e & red orange & white, stiff / very dense, to CLAYEY SILT with occasional weathered					
E	- 2500		one/quartzite. Residual feldspathic sandstone.	-1600	A X			
1997	_000			-1800				
	3000			-2000	AND THE STREET			
	- 3000			0 20 40 60 80 100				
		Near refusal in very dense	e residual	(mm/Blow)				
		No Water		(IIIII/ DIOW)				

Appendix 3


Lab test data

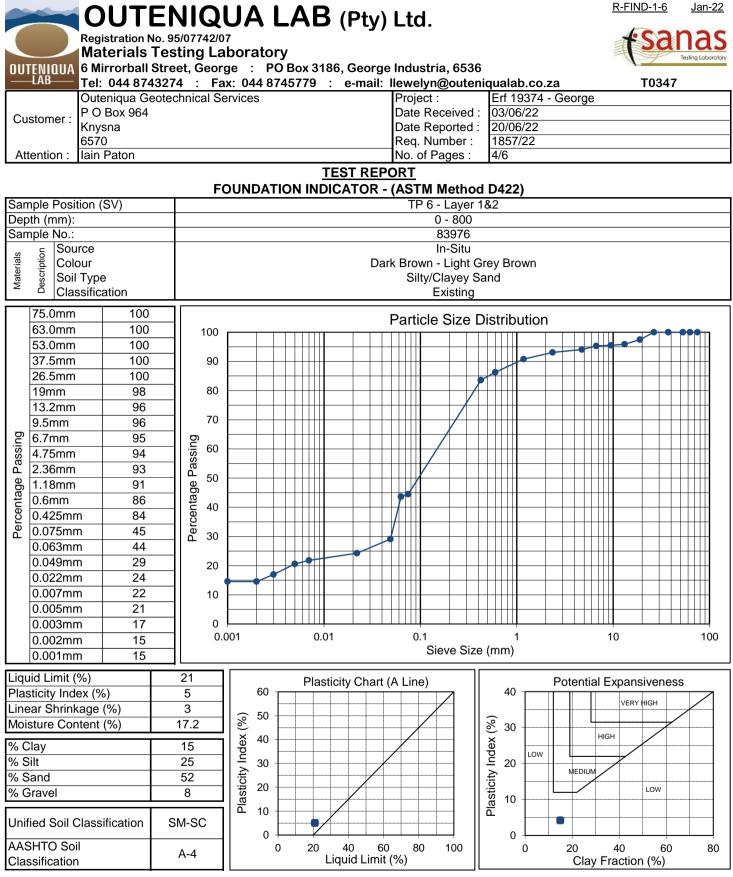
Ruaan Lesch Technical Signatory For Outeniqua Lab (Pty) Ltd.

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.


- 2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and / or taken.
- 3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

Ruaan Lesch Technical Signatory For Outeniqua Lab (Pty) Ltd.

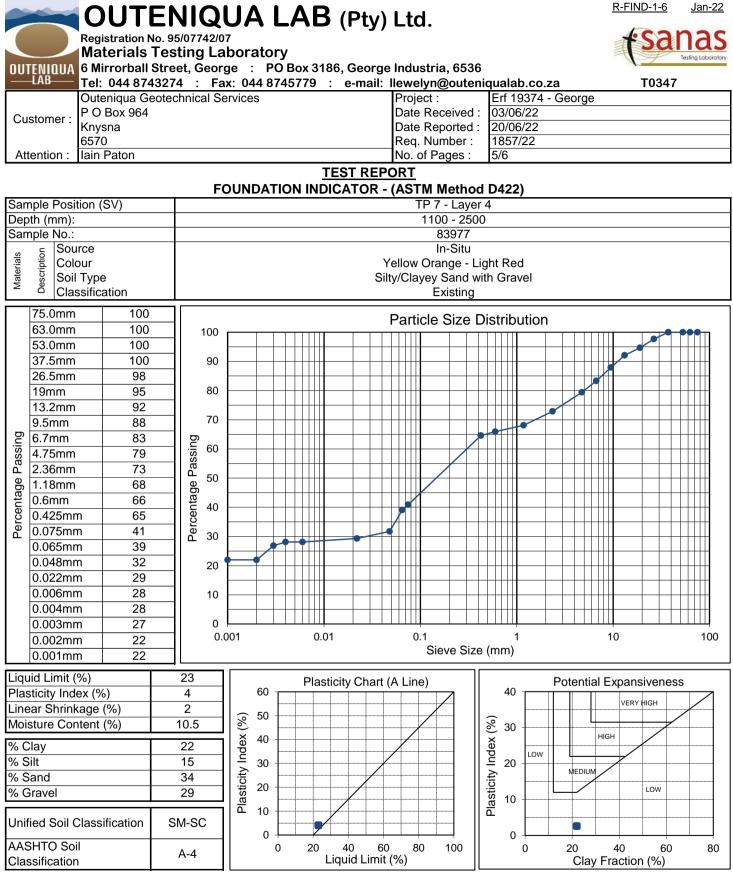
Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.


- 2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and / or taken.
- 3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

Ruaan Lesch Technical Signatory For Outeniqua Lab (Pty) Ltd.

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

- 2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and / or taken.
- 3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

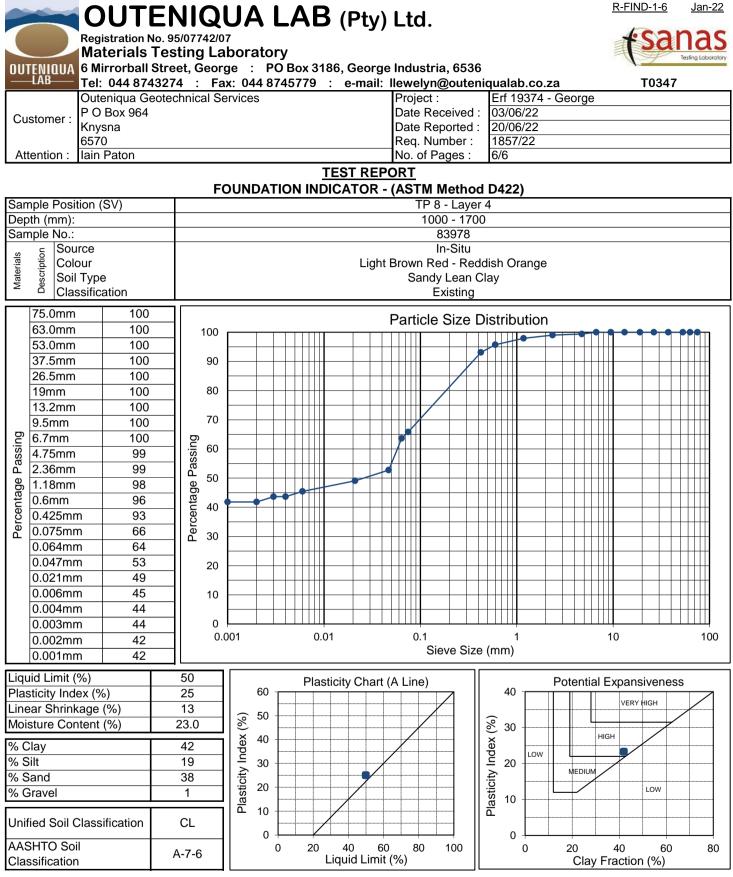

Ruaan Lesch Technical Signatory For Outeniqua Lab (Pty) Ltd.

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

1. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Directors of Outeniqua Lab.

2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and / or taken.

3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.


Ruaan Lesch Technical Signatory For Outeniqua Lab (Pty) Ltd.

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

1. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Directors of Outeniqua Lab.

2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and / or taken.

3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

Ruaan Lesch Technical Signatory For Outeniqua Lab (Pty) Ltd.

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

- 2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and / or taken.
- 3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

		QUA L	АВ (р	ty) Ltd.		<u>R-CBR-1-8</u> <u>May-19</u>
	Registration No. 95/077 Materials Testing	42/07	X	3,		Sana:
ENIC	1UA 6 Mirrorball Street, G	George : PO Bo				
LAB-	Tel: 044 8743274 :	Fax: 044 87457	′79 : e-m	ail: llewelyn@out	eniqualab.cc	o.za T0347
	Outeniqua Geotechnic	al Services		Project :	Erf 19374Ge	eorge
stom	P O Box 964			Date Received :		
	Knysna			Date Reported :		
entic	6570 on : Iain Paton			Req. Number : No. of Pages :	1857/22 1/2	
FILIC			TEST	REPORT	1/2	
			IFORNIA	BEARING RAT	<u>IO</u>	
	nple Position (SV)	TP 1 - Layer 3	COLTO:	TP 3 - Layer 3	COLTO:	83973
	oth (mm)	700 - 1200	Not	500 - 1000	G7 SSG	Sieve Analysis
San	nple No	83973	Classified			
als	Source	In-Situ Dark Red Orange		In-S		<u></u>
eri	G G Colour S Soil Type Classification			Light Brown - Ligh		
٨at			ell Graded Gravel with Silty Sand		vel with Sand	
~	යී Classification	Existin		Exist		B B B B B B B B B B
	75 mm	100		SANS 3001 Metho 100		
	75 mm 63 mm	100	Opinion	100	Opinion	0.0 0.1 1.0 10.0 100.0 Sieve Size
bu	50 mm	100	•	100		
Passing	37.5 mm	100		100		CBR Chart
Ба	28 mm	98		100		
ge	20 mm	97		95		
	14 mm	80		91		CBX (%)
cer	5 mm	34		71		
Per	2 mm	20		60		1
	0.425 mm	15		51		90 92 94 96 98 100 102 Compaction (%)
	0.075 mm	10.3		34.8		
			ndicators - (SANS 3001 Metho	1	83974
	ding Modulus	2.55		1.54	0.75 - 2.70 🗸	Sieve Analysis
Coa	arse Sand Soil-Mortar (%)	27	Limite (S	14 ANS 3001 Method		
Lia	uid Limit (%)	44	Limits - (S	24		Bu 80 See 60 Bu 80 Bu 80 B
	sticity Index (%)	16		4	≤ 12 ✓	
	ear Shrinkage (%)	8.0		2.0		
	ge (///	Material Strength	- (SANS 300		40 - SCALPED	
~	Max Dry Density (kg/m ³)	2410	, I	2032		0.0 0.1 1.0 10.0 100.0
MDD	Optimum Moisture Content (%)	14.1		10.3		Sieve Size
2	Mould Moisture Content (%)	14.1		10.1		CBR Chart
Α	Relative Compaction (%)	100.0		100.0		
	Swell (%)	0.1		0.1	≤ 1.5 ✓	
в	Relative Compaction (%)	95.4		94.3	┨───┤─	0 CBX (%)
	Swell (%)	0.2		0.2	┨───┤──	
С	Relative Compaction (%) Swell (%)	92.2 0.4		91.6 0.3	┨───┤──	
	@100% Max Dry Density	53		56	┨───┤──	90 92 94 96 98 100 102
	@98% Max Dry Density	36		37	┨───┤──	Compaction (%)
BR	@95% Max Dry Density	20		21		• 83973 • 83974
CB	@93% Max Dry Density	13		14	≥ 15 ×	
	@90% Max Dry Density	7		8		550 Wearing Course Graph (TRH 20)
				I Condition	<u> </u>	500 - 50 450 - 5 450 - 5 400 -
In	situ Moisture Content (%)					G 500 Slippery U 500 Slippery U 350 Good U 250 Frodble Materials Good Ravels U 150 Good U 150 Ravels and Corrugates
	× /	Soil Clas	sification A	chieved By The Ma	aterial	Good Content Good (May be Dusty) 250 Erodible Materials
						9 150 - Good
	COLTO:	Not Classified		G7 SSG		든 100
	COLTO: AASHTO System Unified System	Not Classified A-2-7 GP-GM		A-4 GM-GC		5 100 Ravels and Corrugates 0 4 8 12 16 20 24 28 32 36 40 44 48

Ruaan Lesch

Technical Signatory

For Outeniqua Lab (Pty) Ltd.

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

1. The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (<), non compliant (×) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

2. The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliant (×) or non compliant (×) based on a 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

95% level or contidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.
3. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Director of Outeniqua Lab (Pty) Ltd.
4. Measuring Equipment, Iraceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab (Pty) Ltd nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

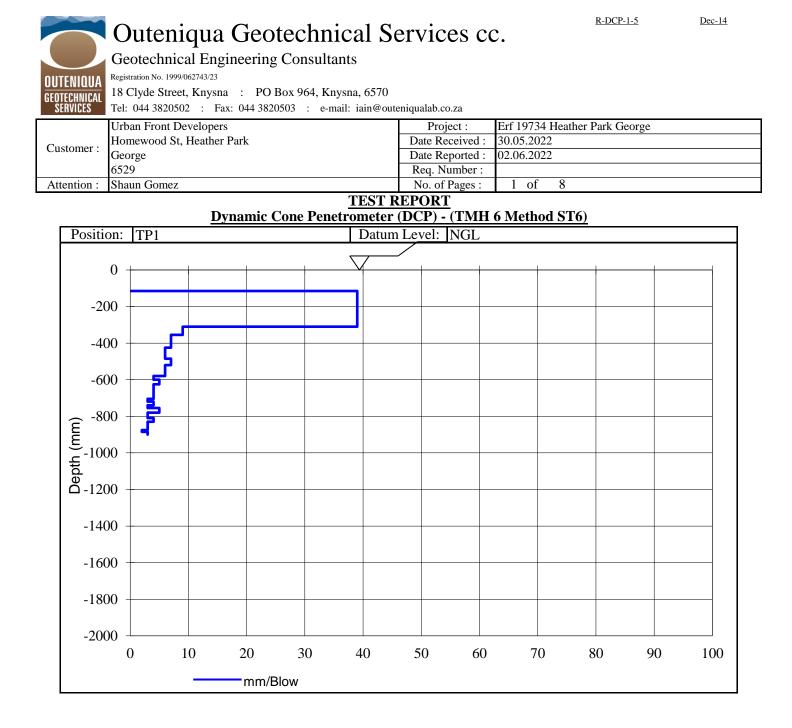
			AR (Pt	y) Ltd.			<u>R-CBR-1-8</u> May-1
	Registration No. 95/077 Materials Testing	Salla. Testing Lobora						
INIC	1UA 6 Mirrorball Street, G							
ENIQUA LAB Tel: 044 8743274 : Fax: 044 8745779 : e-mail: llewelyn@outeniqualab.co.za								
Outeniqua Geotechnical Services Project : Erf 19374 - Geo								eorge
tom	her: P O Box 964				Date Received :			
	Knysna 6570				Date Reported : Req. Number :			
ntic	on : Iain Paton				No. of Pages :	2/2		
/////					EPORT			
Son	nnla Desition (S)()				EARING RAT		<u></u>	82076
	nple Position (SV) oth (mm)	TP 6 - Layer 1&2 0 - 800	COLTO Not	-	TP 7 - Layer 4 1100 - 2500	COLT	0:	83976
	nple No	83976	Classifie		83977	G7 SS	GG	Sieve Analysis
San	Source	In-Sit		÷u	In-Si	itu		
ials	Source Colour Soil Type Classification	Dark Brown - Ligh		wn	-		ed	
teri	Soil Type	Silty Claye			Silty Clayey San	0		a ∾ − − − − − − − − − − − − − − − − − −
Ma		Existir	-		Existi		avei	ğı 40
_				. (9	ANS 3001 Metho			60 60 60 60 60 60 60 60 60 60
	75 mm	100			100		E	0.0 0.1 1.0 10.0 100.0
	63 mm	100		Opinion	100	-	Opinion	Sieve Size
ng	50 mm	100		0	100	1		
Passing	37.5 mm	100	+		100	1		CBR Chart
Ба	28 mm	100			98			
Percentage	20 mm	97			95			(%)
)ta	14 mm	96			92			
cer	5 mm	94			79			
ere	2 mm	92			71			
а.	0.425 mm	84			65			92 94 96 98 100 102
	0.075 mm	56.2			46.6			Compaction (%)
		Material II	ndicators	- (S	ANS 3001 Metho	d PR5)		83977
	ding Modulus	0.68			1.17	0.75 - 2.70) 🗸	Sieve Analysis
Coa	arse Sand Soil-Mortar (%)	10			10			
			Limits - (SAN	NS 3001 Method	GR10)		Bussel 60 Bussel<
	uid Limit (%)	21			23			e 60
	sticity Index (%)	5			4	≤ 12	\checkmark	40 40
line	ear Shrinkage (%)	2.5	(0.4.1)0.00		2.0			<u><u></u><u></u>20</u>
	Max Dry Danaity (har /m ³)	Material Strength	- (SANS 30	101	2120	40 - SCAL	PED)	
MDD	Max Dry Density (kg/m ³) Optimum Moisture Content (%)	2084 8.2			9.7			0.0 0.1 1.0 10.0 100.0 Sieve Size
M	Mould Moisture Content (%)	8.5			10.0	+		
	Relative Compaction (%)	100.0			10.0			CBR Chart
Α	Swell (%)	0.6	+		0.1	≤ 1.5	✓	
-	Relative Compaction (%)	95.3			95.8			
в	Swell (%)	0.8			0.1			01 CBR (%)
~	Relative Compaction (%)	92.4			92.2	1		
С	Swell (%)	1.0			0.2	1		
	@100% Max Dry Density	17			50			90 92 94 96 98 100 102
CBR	@98% Max Dry Density	13			33			Compaction (%)
	@95% Max Dry Density	9			18			• 83976 = 83977
0	@93% Max Dry Density	7			12	≥ 15	*	Wearing Course Graph (TRH 20)
	@90% Max Dry Density	5			6			550
			Mater	ial (Condition			S 450 Slippery 350 - -
Insitu Moisture Content (%)								2 300 - (May be Dusty)
	00170		sification	Ach	nieved By The Ma	aterial		250 - Erodible Materials Ravels
	COLTO:	Not Classified			G7 SSG	 		Social So
							1	
	AASHTO System Unified System	A-4 CL-ML			A-4 GM-GC		-	0 4 8 12 16 20 24 28 32 36 40 44 48

Ruaan Lesch

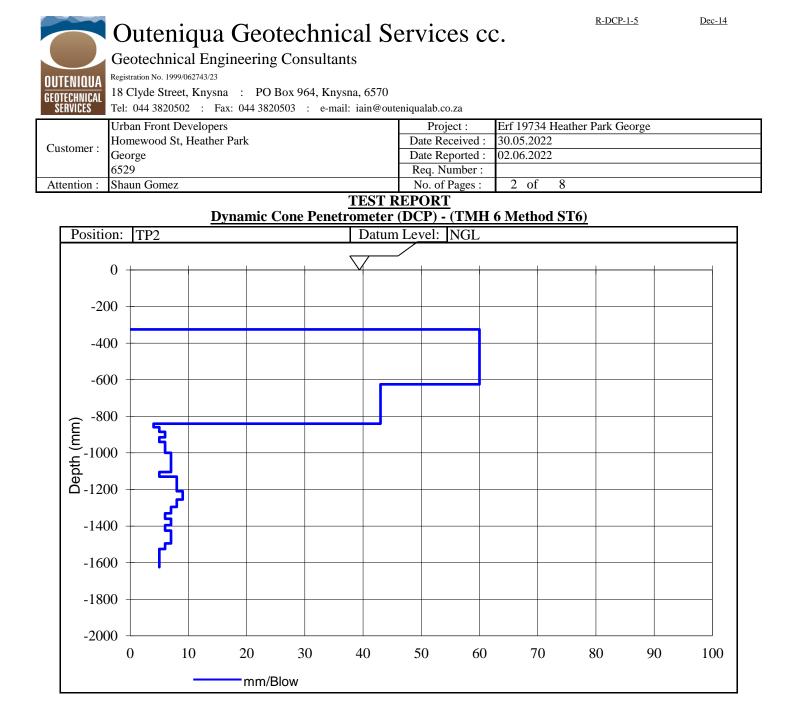
Technical Signatory

For Outeniqua Lab (Pty) Ltd.

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

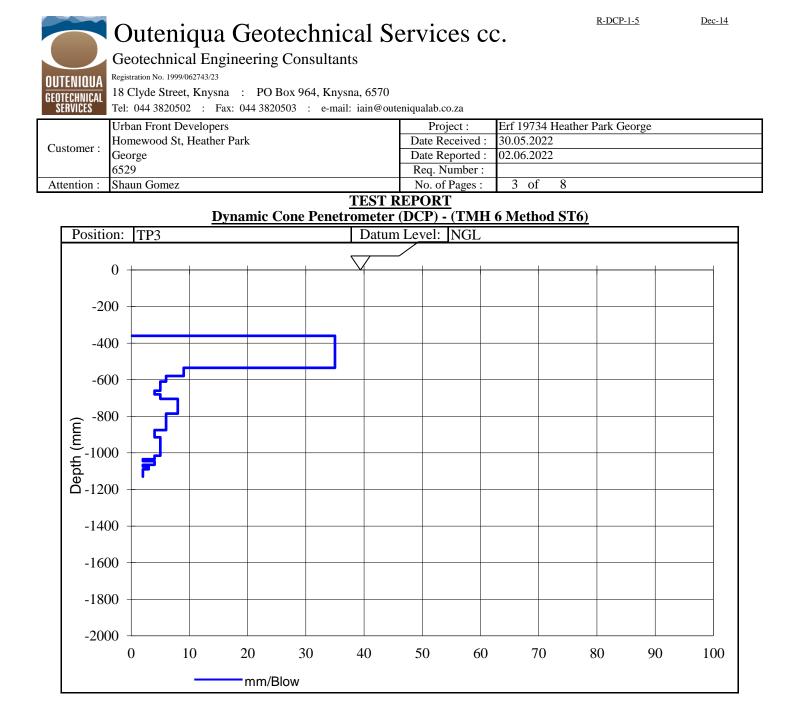

1. The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (<), non compliant (×) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

2. The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliant (×) or non compliant (×) based on a 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

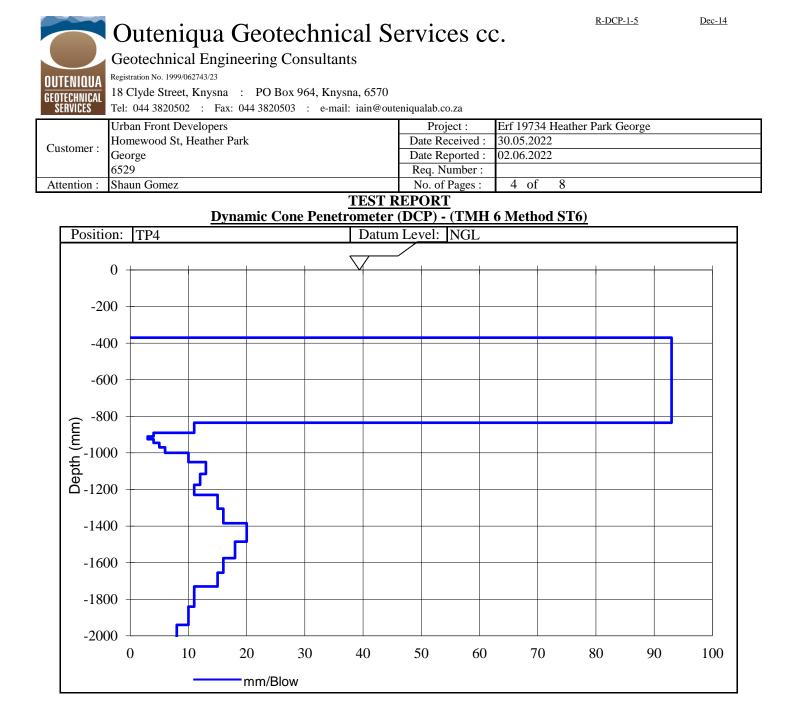

95% level or contidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.
3. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Director of Outeniqua Lab (Pty) Ltd.
4. Measuring Equipment, Iraceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.
5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab (Pty) Ltd nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

Appendix 4

DCP test data

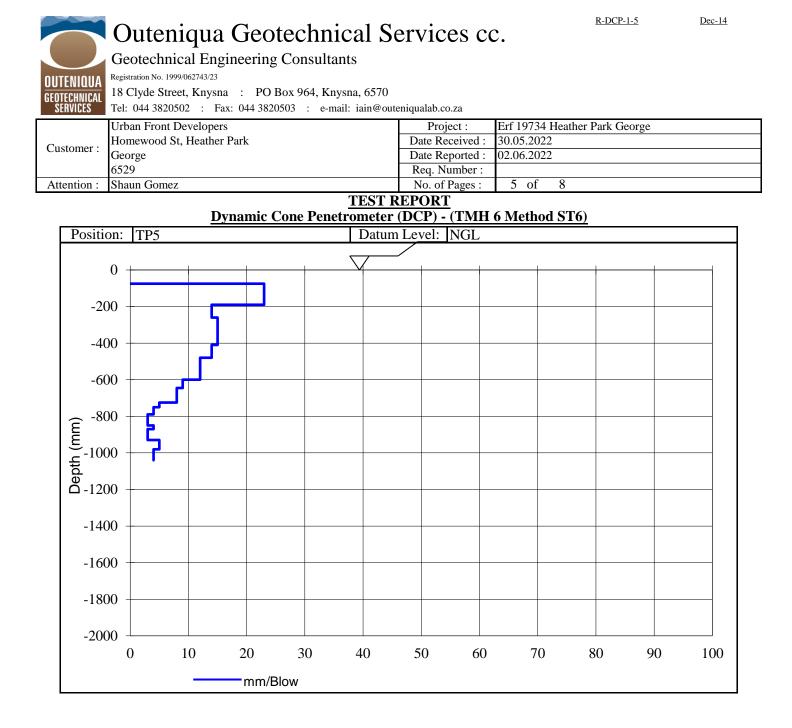


This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

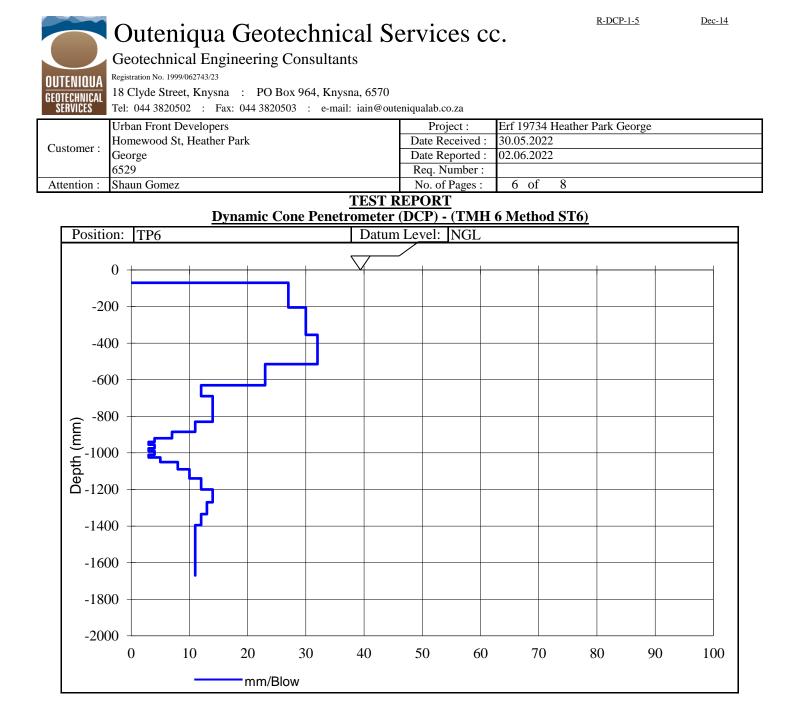


This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

3.

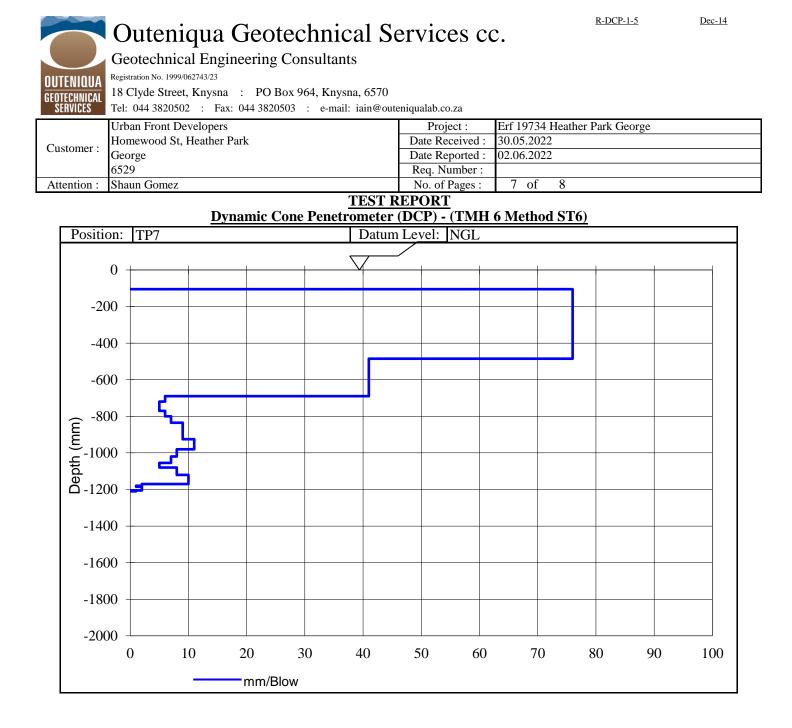


This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

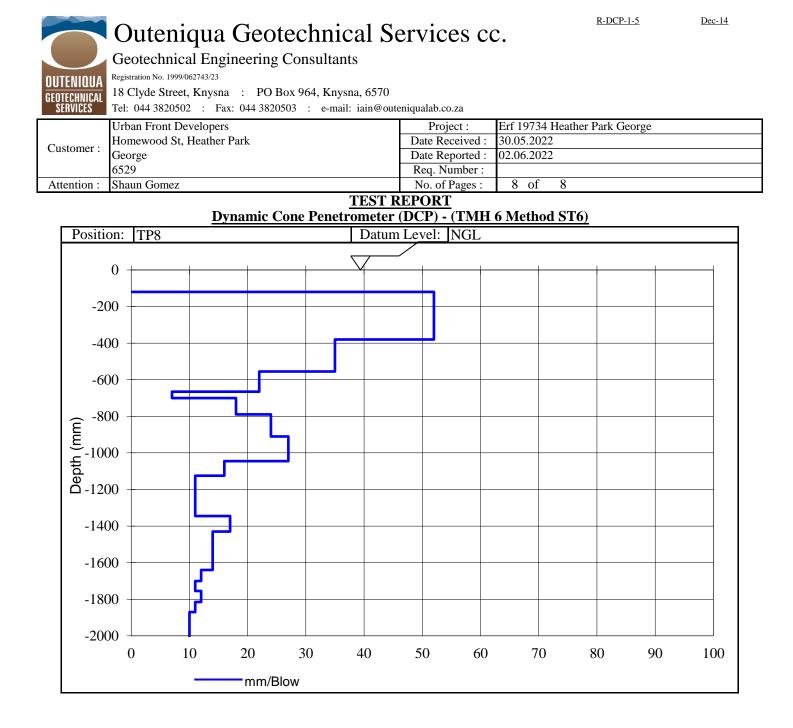


This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

3.



This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn



This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

3.

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Members of Outeniqua Geotechnical Services cc. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn

3.

Appendix 5 Calculations

Site:	Erf 19374	George			TP no:	4		
From (Depth in mm)	To (Depth in mm)	Depth from (ft)	Depth to (ft)	Depth factor	Potential Expansiveness	Total Heave (in)	Heave (mm)	NHBRC Cat
0	400	0	1	0.943	0	0.0	0.00	
400	700	1	2	0.824	0	0.0	0.00	
700	2000	2	7	3.018	0.25	0.8	19.16	
2000	2500	7	8	0.422	0	0.0	0.00	
2500	2600	8	9	0.376	0	0.0	0.00	
						0.8	19.16	H2

Potential Heave Calculations - Van der Merwe Method*

Potential Expansiveness	Inches
Very High	1
High-Very High	0.75
High	0.5
Medium	0.25
Low	0

* Van der Merwe, D M 1964. The prediction of heave from the plasticity index and percentage clay fraction of soils. The Civil Engineer in South Africa, 6(6): 103–107.

Site:	Site: Erf 19374 George				TP no:	8		
From (Depth in mm)	To (Depth in mm)	Depth from (ft)	Depth to (ft)	Depth factor	Potential Expansiveness	Total Heave (in)	Heave (mm)	NHBRC Cat
0	400	0	1	0.943	0	0.0	0.00	
400	1000	1	3	1.574	0	0.0	0.00	
1000	1700	3	6	1.795	0.5	0.9	22.80	
1700	2600	6	9	1.271	0	0.0	0.00	
						0.9	22.80	H2

Potential Expansiveness	Inches
Very High	1
High-Very High	0.75
High	0.5
Medium	0.25
Low	0

* Van der Merwe, D M 1964. The prediction of heave from the plasticity index and percentage clay fraction of soils. The Civil Engineer in South Africa, 6(6): 103–107.