

Engineering Geological Report

In support of the proposed upgrade of the

Gwaing Wastewater Treatment Works Phase 2 George – Western Cape

Final Report TG24/013/2 June 2024

Document History and Distribution:

Title:	Gwaing Wastewater Treatment Works Upgrade - Phase 2
Project No:	TG-24-013

Name	Organization	Date	Document no	Version
Danie Brandt	Lukhozi Consulting Engineers (Pty) Ltd	13 June 2024	TG24/013/1	V1
Danie Brandt	Lukhozi Consulting Engineers (Pty) Ltd	19 June 2024	TG24/013/2	V2

Conducted For the Consultant:

Lukhozi Consulting Engineers (Pty) Ltd

Mr Danie Brandt

Professional Engineer

St John's Place

8 St John's Street

Dormehlsdrift

George

6529

Conducted on Behalf of the Client:

George Municipality

Report Compiled By:

Mr Eugene van der Walt Engineering Geologist Registered at: SACNASP, SAIEG, NHBRC 082 073 8566 eugene@terrageo.co.za

Terra Geotechnical

Lala

The information presented in this document is based on the information supplied by the Consultant prior to the commencement of the investigation. All care and diligence have been taken in rendering services and preparing these documents.

This document contains confidential and proprietary information of Terra Geotechnical and is protected by copyright in favour of Terra Geotechnical and may not be reproduced, or used without the written consent of Terra Geotechnical, which has been obtained beforehand. This document is prepared exclusively for **Lukhozi Consulting Engineers** and is subject to all confidentiality, copyright and trade secrets, rules, intellectual property law and practices of South Africa

Table of Contents Introduction......1 1.2. 1.3. Objectives......2 Location3 2.2. Topography2 2.3. 2.4. 2.5. Planned Development4 Geological Setting.....8 3.1. Regional Geological Setting8 Prominent Geological Structures8 Geotechnical Field Investigation and Laboratory Testing9 Reconnaissance Study......9 4.2. Site Investigation9 4.3. Laboratory Testing......9 Geotechnical Setting......11 5.1. Trenching......11 5.1.1. Excavation of test pits11 Generalised engineering geological parameters13 5.1.2. Generalised soil profile......14 5.1.3. 5.1.4. 6.1. Engineering- and material characteristics......21 Sampling21 6.1.1. 6.1.2. Soil Test Results: Upper Transported21 6.1.3.

Soil Test Results: Weathered Granite23

Standard Consolidation Characteristics of the In-Situ Soils26

Material usage26

6.1.4.

6.1.5.

6.1.6.

6.1.7.

6	.3.	Bearing Capacity	27
7.	Pro	pposed Developmental Phase	29
7	.1.	Phase A	29
7	.2.	Phase B	29
7	.3.	Phase C	30
7	.4.	Phase D	30
8.	Ge	otechnical Site Classification	31
8	.1.	General	31
8	.2.	Groundwater Occurrence	32
8	.3.	Soil Excavatability	32
8	.4.	Slope Stability and Stability of Temporary Cuttings	32
8	.5.	Site Classification	33
8	.6.	Erodability of material	34
	8.6	.1. Dispersive soils	34
	8.6	.2. Expansive soils	34
9.	Fou	undation Recommendations and Solutions	35
10.	Li	imitations	36
MA	PS		37
APF	PEN	DIX A	48
A.1	Т	est Pit Profiles	48
APF	PEN	DIX B	105
B.1	L	aboratory Test Results	105
APF	PEN	DIX C	127
C 1	DP:	SH Test Results	127

1. Introduction

This report describes the results of a geotechnical site investigation in support of the proposed upgrade to the Gwaing Wastewater Treatment Works (Gwaing WWTW). The developmental area is within the boundaries of the existing Gwaing WWTW, and is located on the south western outskirts of the city of George, Western Cape. The Gwaing WWTW is currently operating under constrained condition and requires a hydraulic upgrade to 21Ml/day as part of this work package (current feasibility design report planning) to ensure sufficient capacity is available for existing and future flows. The ultimate capacity upgrade of the treatment work is 50Ml/day. This upgrade is proposed in four phases (A-D), each with its own objectives. will typically incorporate the construction of a large warehouse with office, storage facilities, parking and ablution facilities.

1.1. Terms of Reference

Terra Geotechnical was appointed in March 2024, by Mr Danie Brandt (representing Lukhozi Consulting Engineers (Pty) Ltd), to conduct this geotechnical investigation. The area of the investigation, was defined and approved by the consultant, before the commencement of the investigation. The distribution of testing locations and the associated sampling were indicated by the consultant, and further done where physically possible and to best model the geotechnical character of the site for this specific development. Testing frequency was discussed and approved by the engineer during the guotation phase.

The quantity and nature of samples were governed by the nature of the proposed development and the in-situ characteristics of the material excavated across the site.

1.2. Sources of Information

The following sources of information were utilized:

- Remote Sensing Information:
- Google Earth Pro TM
- Elevation Heat Map; Online Resource
- Planet GIS

1.3. Objectives

The purpose of the Investigation is to identify the presence and extent of groundwater, rock and most importantly to assess and report on the erodibility and stability of the insitu materials, soils that are exposed by flooding and by excavation during construction.

The investigation had the following aims:

- identify potential geotechnical hazards
- to determine and evaluate the **mechanical properties of the soil** material underlying the proposed structures.
- define the ground conditions and classify the conditions through detailed soil profile descriptions and groundwater occurrences within the zone of influence of foundations
- To assess the in-situ mechanical properties and the re-usability of the natural material underlying the development in question.
- To evaluate the **excavation characteristics** across the development in question.
- Ground stability for deep excavations
- To **recommend** measures to be implemented during the design and development of the area in question.

It must be noted that this investigation was conducted to assist with the design and construction phase of the development.

2. General Location and Description of Site

2.1. Location

The study area for this investigation is located on the south western outskirts of the city of George, forming part of the George Local Municipality.

Figure 1 graphically depicts the location of the study area.

The site is located roughly at the following coordinates:

Latitude: 33°59'37.92" S Longitude: 22°25'27.88" E

The site is further located within the boundaries of the existing Gwaing WWTW. The site is accessed via the R102 towards the north of the site.

The site currently hosts the existing Gwaing WWTW. The site has been completely altered from the natural due to the construction and operation of the existing Gwaing WWTW and associated infrastructure. Figure 2 below depicts the site location and existing infrastructure.

2.2. Topography

The study area is characterized by prominent ridge type structures displaying finger-like limbs that gives rise to a highly variable topography with moderate and steeply sloping landscapes. The weaker strata are typically weathered and eroded to form incised valley features.

The site is located on the western side slope of such a such a ridge feature and displays a gentle to moderately sloping morphology, decreasing in elevation towards the west.

Figure 3 below depicts the topographical features of the study area. Various valley type structures are identified by closely spaced contour lines and the presence of a drainage (non-perennial and perennial). The image depicts that no known drainage channels traverse the site.

2.3. Drainage

The study area is drained mainly by means of surface run-off (i.e.: sheetwash), with storm water flowing west, towards the Gwaing River to the west of the site. The natural drainage across the site has been altered due to the past construction activities across the site.

2.4. Climate

The study area experiences rainfall throughout the year. The mean annual precipitation is approximately 797 mm. Mean monthly maximum and minimum temperatures are 12°C in July and 20°C in February.

The climatic N-value (Weinert, 1980) of the area is deemed to be less than 5; therefore, chemical decomposition rather than mechanical disintegration, of the parent rocks is deemed the principal mode of weathering.

2.5. Planned Development

Phase A

Gwaing WWTW is currently operating just beyond its capacity. The primary purpose of Phase A is to increase the capacity of the plant in the shortest possible time to ensure the works has enough capacity to sufficiently treat wastewater to comply with effluent requirements. It is proposed that for Phase A of the upgrade, the MLE process be used to maximise capacity in the short term. When Phase B is implemented, the UCT process can be implemented to increase phosphorus removal. The proposed solution is to construct 6 additional Secondary Settling Tanks (SSTs) to operate together with the existing Biological Reactor A. The 8 SSTs in total, together with Biological Reactor will give an additional capacity of 3.7 MLD resulting in a total capacity of 14 MLD (ADWF).

Image 4a graphically depicts the planned developmental during Phase A

Phase B

There were two options investigated for Phase B of the upgrade. The first option is implementing an additional biological reactor and operating a UCT system with unsettled wastewater. The second option is to implement primary settling (including all primary sludge handling) and operating a UCT settled process with the existing Biological Reactor. The two options were compared to each other and workshopped together with George Municipality.

An optioneering exercise was conducted at a Workshop with the Consultants, Municipal Project Managers, Municipal process specialists and Municipal plant operators present. The optioneering was conducted to compare key attributes between Option 1 and Option 2 for Phase B of the upgrades. The optioneering exercise resulted in Option 1 being the preferred option for Phase B.

Image 4a graphically depicts the planned developmental during Phase B

Phase C

Phase C of the upgrade will be to construct Module C's reactor and SSTs. It is proposed to construct the final reactor and SSTs prior to constructing the Primary Settling Tanks (PSTs) and associated primary sludge handling unit processes as all the ancillary infrastructure for the reactors and SSTs would have been constructed as part of Phase B. This includes the Blower House, Return-Activated Sludge (RAS) pump station and Waste-Activated Sludge (WAS) pumpstation. It would also give more redundancy with the additional reactor and SSTs should maintenance on any of the existing infrastructure be required. The total capacity of the plant after the Phase C upgrade will be 33 MLD operating a UCT settled process.

Image 4a graphically depicts the planned developmental during Phase C

Phase D

Phase D of the upgrades will be the final phase of the Master Plan. The phase will see the construction of the four PSTs, primary sludge pumpstation and three additional anaerobic digestors. The existing PSTs will be refurbished and used as gravity thickeners for the primary sludge. Phase D will increase the plant's capacity from 33 MLD to 50 MLD, operating a UCT settled process. The sequencing of Phase C and D can be switched around if the Municipality chooses to do so when it comes time for the upgrade. Switching the two phases will have the same impact on the capacity.

Image 4a graphically depicts the planned developmental during Phase D

3. Geological Setting

3.1. Regional Geological Setting

According to the geology map 3322 CD George, the study area is underlain by Gneissic Granite of the Maalgaten Formation forming part of the George Pluton.

The regional geological setting of the study area (minus the surficial soil cover) is illustrated by Figure 3.

The study area does not reflect any risk for the formation of sinkholes or subsidence caused by the presence of water-soluble rocks (dolomite or limestone), and as such is not deemed "dolomitic land"

3.2. Prominent Geological Structures

The available geological information does not indicate the presence of any geological structures traversing the site.

4. Geotechnical Field Investigation and Laboratory Testing

4.1. Reconnaissance Study

The investigation commenced with the conducting of the following actions:

- The collation and evaluation of available geological and geotechnical information, with specific reference to previous geotechnical investigations undertaken within the vicinity.
- The compilation of a base map showing the regional geological setting

4.2. Site Investigation

The field work phase was conducted by Terra Geotechnical over multiple days during the months of March and April of 2024. All testing locations were provided by the Consultant.

Test pits were placed at strategic (predefined) positions throughout the study area in such a way as to accurately describe the general soil conditions occurring within the boundaries of the study area. The succession of soil and rock layers exposed within the test pits were logged according to the industry-standard method proposed by Jennings et al (1973), and a series of detailed photographs were taken of the different soil layers, and samples were taken of the soil- and rock material deemed to be important to the proposed development.

Dynamic Probe Super Heavy (DPSH) tests were conducted at predefined locations scattered across the site to assess the consistency (and depth to bedrock) of the material underlying the site.

4.3. Laboratory Testing

The following tests were conducted on soil samples taken during the field work phase:

- Standard foundation indicator tests were conducted on disturbed soil samples in order to determine its composition (i.e.: the relative percentages of gravel, sand, silt and clay present within each sample), to evaluate the heave and compressibility potential of these soils, and to calculate the maximum heave and/or differential settlement that can be expected. The following tests were conducted:
 - Atterberg Limits (Liquid Limit and Plasticity Index) and Linear Shrinkage
 - Particle-size distribution
- Standard road indicator tests were conducted on bulk soil samples in order to determine its composition, and to evaluate the suitability of the materials for use in the construction of access roads and parking areas. These tests were conducted:
 - ❖ Maximum Dry Density versus Optimum Moisture Content
 - Californian Bearing Ratio versus Compaction Effort (MOD AASHTO method)
- Specialised Geotechnical testing on undisturbed samples were conducted in order to determine the in-situ properties of the material present across the site. The following tests were conducted:

- Consolidation test (Single Oedometer)
- Swell Potential

5. Geotechnical Setting

5.1. Trenching

5.1.1. Excavation of test pits

A total of 14 test pits, numbered TP1 to TP14 (Figure 6 on the following page), were excavated across the site by means of a TLB-type light mechanical excavator. The test pits were excavated to refusal either refusal or maximum reach.

The test pits were placed at locations proposed by the Consultant. The table below provides the coordinates of each of these test pits.

	Testing Locations					
Test Number	Latitude (South)	Longitude (East)				
	Test Pit					
TP1	33.992794	22.423955				
TP2	33.993049	22.424620				
TP3	33.993110	22.423087				
TP4	33.993754	22.422824				
TP5	33.993780	22.423802				
TP6	33.994512	22.423208				
TP7	33.994365	22.424319				
TP8	33.995883	22.421882				
TP9	33.995909	22.422917				
TP10	33.995324	22.424623				
TP11	33.996280	22.423805				
TP12	33.996765	22.424352				
TP13	33.996863	22.423009				
TP14	33.998017	22.422156				

Figure 6 on the following page graphically depicts the location of each of the test pits.

5.1.2. Generalised engineering geological parameters

The following general engineering geological characteristics were noted:

Site Excavatability

The TLB-type light mechanical excavator was generally able to excavate trial pits to depth of between 2.5 and 3.6 m with little or no difficulty. For this reason, **no problems** are foreseen during the excavation of **shallow foundations** or **deep service trenches** to a depth of at least 2.5 m below the existing ground level, through the use of a TLB-type light mechanical excavator.

The excavation type to a depth of at least 2.50 m below the existing ground level is deemed to be **Soft Excavation**. (SANS 1200D).

Rock- and/or pedocrete outcrops

Bedrock or pedocrete outcrops were not encountered within the investigated area.

Sidewall stability

The sidewalls of all test pits generally remained stable for at least 1 hour.

Groundwater seepage

Groundwater seepage was observed in three test pits (TP1, TP3 & TP12) across the site. This seepage is categorized as a perched groundwater table, and it was generally identified as slow to moderate flow. It is mainly present within the fill, pedogenic horizon and the upper transported soils. Perched groundwater occurs when an impermeable layer restricts water from infiltrating deeper into the aquifer, causing it to move laterally through the strata.

What is also noted is the generally slightly moist to moist condition of all exposed soil horizons. Pedogenic material (ferricrete nodules) was identified at various locations across the site at shallow depth, indicating the occurrence of a fluctuating water table or soil moisture evaporation.

5.1.3. Generalised soil profile

Note: this description is based on field observations, and does not reflect the results of any laboratory tests

The results of the trenching phase indicate that the whole site is covered by a relatively homogeneous succession of soil layers. Typically, the site was covered by a highly organic topsoil with abundant root structures, underlain by a prominent transported horizon. This transported horizon was underlain in some test pits by a thin nodular ferricrete, after which another alluvial horizon was encountered. Below the transported layers, the residuum is encountered in various stages of alteration i.e. reworked residual granite, residual granite and completely weathered granite.

The following Table summarizes the depths at which these various horizons were encountered.

				Soil Profile	summary			
	Uncontrolled		Pedogenic Horizon		Residuum		Refusal by TLB	Water Seepage
Test Pit	Fill	Transported	Ferricrete/Ferruginized Material	Reworked	Residual	Completely Weathered	Y/N	Water Seepage Y/N
TP1		900	1100	1800	2700		N	Y @ 900 mm
TP2		800	1400	1800	2600		N	N
TP3	2200				2600		N	Y @ 2200 mm
TP4		800	1400	1800	2500		N	N
TP5	400	1200	1300	2000	2200	2600	N	N
TP6		900		2600			N	N
TP7		900		1600	2700		N	N
TP8	2600					3600	N	N
TP9	400			1100		2500	N	N
TP10	600	1000		2500			N	N
TP11	1000		1300	1700	2200	2500	N	N
TP12	1500			2600			N	Y @ 1100 mm
TP13	500		600	1000		2500	N	N
TP14		600		1100	1600	2700	N	N

These horizons will be discussed in more detail in below:

Uncontrolled Fill:

At various locations across the site, uncontrolled fill was encountered and exposed within test pits. The majority of these instances proved the thickness of this uncontrolled fill was up to 600 mm. However, in various test pits, uncontrolled fill was encountered from surface to depths of between 1000 and 2600 mm below existing ground level. These areas are seen to host fill consisting of household refuse, building rubble, etc. At TP8, sewer sludge was encountered to a depth of 2600 mm below ground level.

Transported:

The transported horizon was encountered in 8 test pits. It was present generally as slightly moist to moist, brown, silty sand with scattered cobbles and generally exhibited a medium dense consistency with an intact structure. This layer was encountered to depths of between 600 and 1200 mm.

Pedogenic Horizon:

A thin pedogenic horizon was encountered at various locations across the site consisting of frequent ferricrete nodules in a matrix of silty/clayey sand. This layer had a thickness of between 200 and 600 mm.

Residuum

Below the various imported and transported horizons, the residuum was encountered. The residuum is formed as a result of the weathering and erosion process acting on the underlying bedrock over long periods. Across this site, the granitic bedrock is found to have been altered to various degrees, resulting in variable layers of residuum. These layers typically become less altered with depth. The transition between these layers is not always well defined and is known as gradational contacts.

• Reworked Residual Granite

Encountered throughout the majority of the site, this horizon was present as slightly moist to moist, dark red patched brown mottled greyish yellow, very soft to stiff, slickensided and/or relict jointing, clayey/sandy silt. Water movement in the reworked layers were evident, especially in the upper part of the residual soils. Decomposed rootlets and clay fill is encountered within this relict joints.

These reworked residual soils were typically found to occur to depths of between 1100 and 2600 mm with a typical thickness of between 400 to 1700 mm.

Residual Granite

The residual granite is present as slightly moist to moist, orange patched red mottled grey, clayey/silty sand with scattered gravels. Furthermore, it exhibits a very soft to very stiff consistency. Decomposed rootlets and clay fill is encountered within this relict joints. At times, the residual granites were seen to host a micaceous nature.

Completely Weathered Granite

Completely weathered granite is totally discoloured and decomposed an in a friable condition with only fragments of rock texture and structure preserved. The external appearance is that of a soil. This horizon was present as slightly moist, light yellow mottled orange speckled grey, clayey/silty sand with gravels. Furthermore, it exhibits a very dense/very stiff consistency.

Detailed test pit profiles are included in Appendix A.

The table on the following page summarizes the soil profiles as encountered across the site.

				Soil Profile	summary				
	Uncontrolled		Pedogenic Horizon		Residuum		Refusal by TLB	Water Seepage	
Test Pit	Fill	Transported	Ferricrete/Ferruginized Material	Reworked	Residual	Completely Weathered	Y/N	Y/N	
TP1		900	1100	1800	2700		N	Y @ 900 mm	
TP2		800	1400	1800	2600		N	N	
TP3	2200				2600		N	Y @ 2200 mm	
TP4		800	1400	1800	2500		N	N	
TP5	400	1200	1300	2000	2200	2600	N	N	
TP6		900		2600			N	N	
TP7		900		1600	2700		N	N	
TP8	2600					3600	N	N	
TP9	400			1100		2500	N	N	
TP10	600	1000		2500			N	N	
TP11	1000		1300	1700	2200	2500	N	N	
TP12	1500			2600			N	Y @ 1100 mm	
TP13	500		600	1000		2500	N	N	
TP14		600		1100	1600	2700	N	N	

Note: All depths in mm, measured from NGL

5.1.4. DPSH Results

The test pitting phase was supported with the addition of DPSH testing. This utilises a 63.5kg hammer which is repeatedly dropped over a distance of 760mm along a guide rail onto an anvil, driving a string of rods with a cone attached at the end. The cone has a diameter of 50.5mm and an apex angle of 60°. A total of 27 DPSH tests were performed across the site, at locations proposed by the Consultant.

Detailed DPSH results are included in Appendix C. The table below provides the coordinates of each of these tests. Figure 7 on the following page graphically depicts the location of each of the DPSH tests.

Testing Locations										
Test Number	Latitude (South)	Longitude (East)								
	DPSH Test									
DPSH1	33.992794	22.423970								
DPSH2.1	33.993071	22.424650								
DPSH2.2	33.993370	22.425082								
DPSH3.1	33.993088	22.423109								
DPSH3.2	33.993262	22.423232								
DPSH4	33.993759	22.422846								
DPSH5	33.993784	22.423826								
DPSH6	33.994529	22.423189								
DPSH7.1	33.994376	22.424349								
DPSH7.2	33.994530	22.424344								
DPSH8.1	33.995895	22.421909								
DPSH8.2	33.996039	22.421987								
DPSH9.1	33.995914	22.422949								
DPSH9.2	33.996113	22.422723								
DPSH10.1	33.995332	22.424659								
DPSH10.2	33.995446	22.424722								
DPSH11.1	33.996284	22.423847								
DPSH11.2	33.996007	22.423723								
DPSH11.3	33.996145	22.424132								
DPSH12.1	33.996769	22.424383								
DPSH12.2	33.996739	22.424087								
DPSH12.3	33.996584	22.424696								
DPSH13.1	33.996878	22.423046								
DPSH13.2	33.996531	22.423144								
DPSH14.1	33.998048	22.422194								
DPSH14.2	33.997674	22.422504								
Additional DPSH	33.994942	22.423375								
Please note that all G	PS co-ordinates are extracted from	m Garmin eTrex® 30x tm .								

The test results were used to determine and correlate the in-situ consistencies of the subsoil materials. In order to ascertain a better relationship between the DPSH penetration rates and the in-situ subsoil consistency, the DPSH N counts were converted to Equivalent SPT N values, after the equation by (MacRobert C., Kalumba D. and Beales P., 2011). The table below provides the DPSH n-value strength relationship according to Huntly 1990.

Table 1: DPSH n – Strength Relationship in Clay (Huntley 1990)											
DPSH n (for 100mm)	Classification (as BS5930:1999)	Strength Cu (kN/m2) (as BS5930:1999)	Equivalent SPT N (for 300mm)								
<1	Very soft	<20	<2								
1-2	soft	20-40	2-4								
3-4	Firm	40-75	5-8								
5-8	Stiff	75-150	9-15								
>8	Very Stiff/Hard	>150	>16								

The table correlates the n-values to an empirical soil consistency and an inferred undrained shear strength. This colour coded table is then utilized to summarise all DPSH probing results and its inferred consistencies. The table on the following page provides this summary.

Some tests reveal soils of SOFT to FIRM consistency, which correlate mostly to test pits where uncontrolled fill was encountered.

The DPSH tests revealed that the consistency of the in-situ subsoils underlying the site are generally of at least STIFF consistency, resulting in an undrained shear strength of between 75 and 150 kPa in its natural state.

As discussed in section 5.1.3, residuum is encountered in all test pits below the various imported and transported horizons. Across this site, the granitic bedrock is found to have been altered to various degrees, resulting in variable layers of residuum. These layers typically become less altered with depth. The transition between these layers is not always well defined and is known as gradational contacts.

This variability in the residuum is clearly noted by analysing the DPSH results. The zone where the site soils reach at least VERY STIFF consistency fluctuates throughout the site, proving the varied degree of alteration of the residuum. It can be generally accepted that the DPSH test yielded results of VERY STIFF, within the horizon profiled as either highly weathered or completely weathered. Furthermore, it can be assumed that HARD conditions resemble weathered bedrock. Practical REFUSAL is also deemed to have occurred in the weathered bedrock.

	Summary - Empirical Soil Consistency From DPSH Results																										
	DPSHnr																										
DeptHard (m)	1	2.1	2.2	3.1	3.2	4	5	6	7.1	7.2	8.1	8.2	9.1	9.2	10.1	10.2	11.1	11.2	11.3	12.1	12.2	12.3	13.1	13.2	14.1	14.2	Add
0,3	Firm	Stiff	Firm	Firm	Firm	Stiff	Stiff	Firm	Firm	Firm	Firm	Soft	Stiff		Soft	Firm	Firm	Very Stiff	Firm	Stiff	Stiff	Very Stiff	Firm	Firm	Soft	Stiff	Stiff
0,6	Firm	Very Stiff	Very Stiff	Stiff	Firm	Stiff	Stiff	Stiff	Stiff	Firm	Firm	Soft	Very Stiff		Firm	Stiff	Hard	Very Stiff	Firm	Stiff	Firm	Stiff	Very Stiff	Stiff	Firm	Stiff	Stiff
0,9	Stiff	Firm	Stiff	Stiff	Stiff	Stiff	Stiff	Stiff	Very Stiff	Stiff	Very Stiff	Soft	Stiff		Firm	Stiff	Hard	Very Stiff	Stiff	Stiff	Firm	Stiff	Stiff	Very Stiff	Stiff	Stiff	Stiff
1,2	Hard	Hard	Hard	Firm	Very Stiff	Stiff	Very Stiff	Stiff	Very Stiff	Stiff	Firm	Soft	Stiff		Firm	Stiff	Hard	Hard	Firm	Firm	Very Stiff	Stiff	Stiff	Very Stiff	Stiff	Stiff	Stiff
1,5	Firm	Stiff	Hard	Stiff	Stiff	Stiff	Very Stiff	Very stiff	Stiff	Hard	Firm	Stiff	Very Stiff		Stiff	Stiff	Stiff	Stiff	Soft	Stiff	Stiff	Stiff	Very Stiff	Stiff	Stiff	Firm	Stiff
1,8	Firm	Stiff	Hard	Very Stiff	Stiff	Stiff	Stiff	Very stiff	Stiff	Very Stiff	Firm	Stiff	Very Stiff		Stiff	Firm	Stiff	Stiff	Firm	Stiff	Firm	Very Stiff	Stiff	Stiff	Stiff	Firm	Firm
2,1	Stiff	Stiff		Stiff	Very Stiff	Stiff	Stiff	Stiff	Stiff	Very Stiff	Stiff	Firm	Very Stiff		Stiff	Stiff	Firm	Stiff	Soft	Firm	Stiff	Very Stiff	Stiff	Stiff	Stiff	Stiff	Firm
2,4	Very Stiff	very Stiff		Stiff	Very Stiff	Stiff	Very Stiff	Stiff	Stiff	Stiff	Stiff	Firm	Very Stiff		Stiff	Stiff	Very Stiff	Very Stiff	Soft	Firm	Firm	Firm	Stiff	Stiff	Stiff	Stiff	Stiff
2,7	Very Stiff	Hard		Firm	Stiff	Stiff	Very Stiff	Stiff	Stiff	Stiff	Very Stiff	Firm	Very Stiff	υ	Stiff	Very Stiff	Very Stiff	Very Stiff	Firm	Stiff	Firm	Firm	Stiff	Stiff	Stiff	Stiff	Stiff
3	Very Stiff	Hard		Firm	Stiff	Very Stiff	Hard	Stiff	Stiff	Very Stiff	Very Stiff	Stiff	Very Stiff	f pip	Firm	Very Stiff	Hard	Very Stiff	Firm	Stiff	Firm	Stiff	Stiff	Very Stiff	Stiff	Stiff	Stiff
3,3	Very Stiff			Refusal	Stiff	Very Stiff		Very stiff			Very Stiff	Stiff	Very Stiff	o e o					Firm					Very Stiff	Stiff	Stiff	Stiff
3,6	Very Stiff				Stiff	Very Stiff					Very Stiff	Stiff	Very Stiff	eser					Firm					Hard	Stiff	Stiff	Very Stiff
3,9	Very Stiff				Very Stiff	Very Stiff					Hard	Very Stiff	Very Stiff	to pi					Stiff					Hard	Stiff	Very Stiff	Very Stiff
4,2	Very Stiff				Very Stiff	Very Stiff					Refusal	Very Stiff	Very Stiff	rest abandonded at 1.0 m, due to presence of pipe					Very Stiff					Refusal	Stiff	Very Stiff	Very Stiff
4,5	Stiff				Stiff	Hard						Hard	Very Stiff	.0 m,					Very Stiff						Stiff	Very Stiff	Hard
4,8	Very Stiff				Very Stiff	Hard						Refusal	Refusal	at 1					Very Stiff						Stiff	Very Stiff	Hard
5,1	Very Stiff				Hard	Hard								papu					Very Stiff						Stiff	Very Stiff	Hard
5,4	Very Stiff				Hard	Hard								iopui					Very Stiff						Very Stiff	Very Stiff	Hard
5,7	Very Stiff				Hard	Hard								t aba					Hard						Very Stiff	Very Stiff	Refusal
6	Hard				Hard	Hard								Tes					Refusal						Very Stiff	Very Stiff	<u> </u>
6,3	Refusal				Hard	Refusal																			Very Stiff	Very Stiff	<u> </u>
6,6					Hard																				Very Stiff	Very Stiff	<u> </u>
6,9					Hard																				Very Stiff	Very Stiff	
7,2					Hard																				Very Stiff	Very Stiff	
7,5					Refusal																				Hard	Very Stiff	<u> </u>
7,8																									Hard	Very Stiff	<u> </u>
8,1																									Refusal	Very Stiff	
8,4																										Hard	
8,7															<u> </u>											Refusal	
		Soft 20-4	0 kN/m2			Firm 40-7	75 kN/m2			Stiff 75-1	50 kN/m2		١	/ery Stiff >	150 kN/m	2	Hard				Refusal						20

6. Geotechnical Evaluation

6.1. Engineering- and material characteristics

6.1.1. Sampling

The following samples were taken:

Disturbed samples : 1 x Transported

7 x Reworked Residual Granite

: 2 x Residual Granite

4 x Completely Weathered Granite

Bulk samples : 1 x Transported

5 x Reworked Residual Granite

4 x Completely Weathered Granite

Undisturbed Sample : 1 x Consolidation Reworked Residual Granite

1 x Swell Potential Reworked Residual Granite

Detailed soil test results are included as in Appendix B.

It should be noted that when saturated and loaded, the soils will undergo loss of strength with the soil grains being forced into a denser state of packing and a reduction in void ratio (decrease in volume). Due to the fine-grained nature of the material, the material is also deemed to be sensitive to moisture changes and will undergo heave and shrinkage with changes in moisture. The result of which is varying degrees of consolidation and heave. For this reason, the assessment and quantification of both the degree and nature of consolidation and heave, under planned foundation loads, will form the basis of the mechanical assessment of the sites' subsoils to follow.

6.1.2. Soil Test Results: Upper Transported

In the light of the soil test results and visual observations, the **Upper Transported soils** sampled across the site can be summarised as follows:

- The material has a fines fraction (passing the 0.075 mm sieve) of **38%**.
- This plasticity of the fines fraction of the material is measured to at NP.
- According to the Unified Soil Classification the material classifies as a silty sand (SM) with a Grading Modulus of 0.68.
- According the to the van der Merwe method of determining Potential expansiveness, this material classifies as a low risk for potential expansiveness.

This material is deemed to be Potentially Compressible

The results of road indicator tests conducted on the bulk samples of this material can be summarized as follows:

This material reacts well to compaction with as CBR value of 17 at a compaction effort of 93% MOD AASHTO. However, this material tested a grading modulus of 0.68, which places this material in the category of a **worse than G9-type** material (COLTO classification system).

6.1.3. Soil Test Results: Reworked Residual Granite

In the light of the soil test results and visual observations, the **Reworked Residual Granite** sampled across the site can be summarised as follows:

- The material has a fines fraction (passing the 0.075 mm sieve) of between 65 and 76%, with the clay fraction constituting 32-50% of the sample.
- This plasticity of the fines fraction of the material is deemed to vary between
 6 and 28.
- According to the Unified Soil Classification the material classifies as a low plasticity clay and/or a high plasticity silt (CL and MH) with a Grading Modulus of between 0.36 and 0.75.
- According the to the van der Merwe method of determining Potential expansiveness, this material generally classifies as a low risk for potential expansiveness, however a single instance (TP4) revealed the soils classifies as a medium to high risk (2-4%) for potential expansiveness.
- This material is deemed to be slightly expansive and Highly Compressible.

This material reacts very poorly to compaction with CBR values of between 1 and 4 at a compaction effort of 93% MOD AASHTO. This material classifies as a **worse than G9-type** material (COLTO classification system).

6.1.4. Soil Test Results: Residual Granite

In the light of the soil test results and visual observations, the **Residual Granite** sampled across the site can be summarised as follows:

- The material has a fines fraction (passing the 0.075 mm sieve) of between 63 and 85%.
- This plasticity of the fines fraction of the material is measured to between 11 and 16.
- According to the Unified Soil Classification the material classifies as a low

plasticity clay (CL).

- According the to the van der Merwe method of determining Potential expansiveness, this material classifies as a Low risk for potential expansiveness.
- This material is deemed to be Potentially Compressible

The results of road indicator tests conducted on the bulk samples of this material can be summarized as follows:

This material reacts very poorly to compaction with as CBR value of 4 at a compaction effort of 93% MOD AASHTO. This material classifies as a **worse than G9-type** material (COLTO classification system).

6.1.5. Soil Test Results: Weathered Granite

- The material has a fines fraction (passing the 0.075 mm sieve) of between 48 and 66%, with the clay fraction constituting 12-22% of the sample.
- This plasticity of the fines fraction of the material is deemed to vary between
 7 and 10.
- According to the Unified Soil Classification the material classifies as a low plasticity clay, sand and silt (CL, SM, ML) with a Grading Modulus of between 0.66 and 1.03.
- According the to the van der Merwe method of determining Potential expansiveness, this material classifies as a low risk for potential expansiveness.
- This material is deemed to be potentially slightly Compressible.

This material reacts very poorly to compaction with CBR values of between 1 of 2 at a compaction effort of 93% MOD AASHTO. This material classifies as a **worse than G9-type** material (COLTO classification system).

Detailed soil test results are included as in Appendix B.

The table on the next page provides a summary of the lab results of the disturbed samples extracted of the on-site material.

Soil Profile	Make-up and									Material Ch	aracteristics-	Laboratory Asse	essment						
Associate	ed Sampling									Bulk and Dis	turbed sample	s tested by Steyn	Wilson						
			So	oil Comp	osition		(measured	from mate	Analysis erial passing the 0.075 sieve)		Classification tem	Activity Accordi Merwe (Material C	ompaction Char	acteristics		
Test Pit nr & Material Description	Sample Depth (mm below ground level)	(cumula		Analysis centage ¡	passing)	Grading Modulus	Plasticit (P		Linear Shrinkage (LS)	USCS Symbol	Material	Potential Expansiveness	Swell	Max Dry Density	Optimum Moisture	СОГТО	(percentage o	sured CBR \compaction of EBR of 13.344 k	MOD AASTHO;
		2,00 mm	0,425 mm	0,075 mm	0,002 mm	(GM)	Minimum	Maximum	Minimum	E S S S S S S S S S S S S S S S S S S S	Description	(according to van der Merwe)	Percentage	(kg/m³)	Content (%)	Classification	90%	93%	95%
										Transpor	ted								
TP7	0-900	99	79	38	18	0,68	N	P	NP	SM	Silty Sand	Low	0,00%	2031	8,1	G9	10	17	23
									Re	eworked Resid	ual Granite								
TP1	1100-1800	99	90	67	44	0,42	7	,	4	CL-ML	Low Plasticity Clay & Silt	Low	0,00%	1792	15.5	>G9	1	1	2
TP2	1400-1800	99	94	72	32	0,36	10	0	5	CL	Low Plasticity Clay	Low	0,00%	1925	8,8	>G9	0	1	1
TP4	1400-1800	87	78	69	42	0,68	28	8	14	МН	High Plasticity Silt	Medium - High	2-4%	1690	19.1	>G9	1	1	1
TP5	1300-2000	93	77	73	50	-	19	9	10	МН	High Plasticity Silt	Low	0,00%	-	-	Inferred >G9,	due to high Grading Mo		and low
TP6	900-1800	86	73	69	50	0,75	23	3	12	CL	Low Plasticity Clay	Low	0,00%	1598	23,1	>G9	3	4	4
TP10	1000-1700	100	95	65	40	-	13	3	7	CL	Low Plasticity Clay	Low	0,00%	-	-	Inferred >G9,	due to high Grading Mo		and low
TP12	1700-2600	100	99	76	38	0,48	6	j	3	CL-ML	Low Plasticity Clay & Silt	Low	0,00%	1939	10,3	>G9	1	1	1
										Residual Gr	anite								
TP3	2200-2600	99	99	85	56	-	14	4	7	CL	Low Plasticity Clay	Low	0,00%	-	-	Inferred >	·G9, due to	high PI valı	ues
TP7	1600-2700	93	73	63	22	-	1:	1	6	CL	Low Plasticity Clay	Low	0,00%	1	-		-		
									Com	npletely Weath	ered Granite		•						
TP9	1100-2500	91	72	52	18	0,88	10	0	5	CL	Low Plasticity Clay	Low	0,00%	1936	8,7	>G9	2	2	2
TP11	2200-2500	86	66	48	12	1,03	9		5	SM	Silty Sand	Low	0,00%	1873	11,6	>G9	1	2	2
TP13	1000-2500	86	66	54	18	0,97	7	,	4	ML	Low Plasticity Silt	Low	0,00%	1819	11.7	>G9	1	1	1
TP14	1600-2700	95	75	66	22	0,66	10	0	5	CL	Low Plasticity Clay	Low	0,00%	1871	10,6	>G9	1	1	1

6.1.6. Heave Characteristics of In-Situ Soils:

Soil heave is the process of the change in volume correlating to a **change in moisture content**. This phenomenon is prominent in soils containing a high content of active clays.

Two methods viz. **van der Merwe heave equation** (1964) & **free swell**, were utilized to determine the potential for heave of the on-site soils.

The table below summarizes the results of the free swell tests.

	Free Swell Test Results													
Sample Number	Sample Depth m	Horizon Thickness m	Insitu Moisture Content	Free Swell %	Swell Presssure kPa	Foundation Load kPa	% Swell	Swell mm	Result					
TP10						25	0,122	1,28	<5 mm at					
Reworked Residual	1,0-1,7	0,7	24,3	1,2	36	50	Negli	gible	foundation load of 25 kPa					

The results of the free swell tests reveal the following;

• Residual granite exhibits a negligible heave under imposed loads of 50 kPa, whilst yielding a swell of up to 5 mm under loads of 25 kPa.

The following comments are relevant to put these results into perspective;

- The initial moisture contents of the samples where notably high (24.3%).
- The sample of reworked residual granite could yield higher free swell and swell pressure results should initial water contents be lower.

The table below summarizes the results of the van der **Merwe heave equation (1964)**.

	Van Der Merwe Method (1964)												
Sample Number	Sample Depth m	Horizon Thickness m	Potential Soil Expansiveness	Unit heave	Depth Factor	Potential Heave (m)							
TP4 Reworked Residual	1,3-2,0	0,7	Medium - High (3%)	0,030	0,60	0,018							

The following are of importance in the analysis of the van der Merwe heave equation;

- It must be noted that the generalized heave equation is calculated assuming the material transitions from a completely desiccated state to a completely saturated state.
- This does not take into account the existing moisture conditions.
- In the majority of the test pits, this active soil horizons was encountered, resulting in a potential heave of approximately 18 mm.

6.1.7. Standard Consolidation Characteristics of the In-Situ Soils

There are three components to settlement namely immediate settlement (also referred to as elastic settlement), primary consolidation settlement and secondary consolidation (also referred to as creep).

Immediate settlement takes place as a load is exerted on the soil mainly due to distortion of the soil. As pore water begins to flow out of the soil a time dependant decrease in volume occurs which is termed consolidation settlement. This settlement will continue until a condition of constant effective stress is reached. This primary consolidation settlement takes place generally in fine grained materials (high percentage of clay or silt).

Secondary consolidation settlement is not considered a concern as this type of settlement usually occurs in soft organic clays where plastic flow within the soil mass results in displacement of the soil particles.

Consolidation within these residual granitic soils has been well documented to take place as collapse settlement. Due to the high moisture content however, the probability of collapse is reduced.

The table below summarizes the results of the oedometer tests conducted on the undisturbed samples extracted from the site soils.

Undisturbed Samples- Summary of the Reworked Residual Granite							
Material Origin	Test Pit	Average Depth (m)	Preconsolidation State		Calculated Maximum Settlement Factor of Saftey = 1.5 (between mm)		
			Pressure (kPa)	Normally or Overconsolidated	50 kPa	100 kPa	150 kPa
Reworked Residual Granite	TP10	1,0-1,7	74	Overconsolidated	8-11	11-16	17-23

The soils across the site are deemed to be overconsolidated in nature, with collapse settlement of between 17 and 23 mm expected within the residuum at loads of 150 kPa. This assumes foundation widths of 0.8m and incorporates a factor of safety of 1.5.

6.2. Material usage

The material encountered across the site displayed a cohesive nature and tested poorly with regards to its re-use during construction. It is recommended that this material not be utilized for layer works during construction and that it rather be stockpiled and removed off-site or be utilized in landscaping purposes. In the light of the soil tests which were completed on the material sampled across the site, these soils can be classified as a **worse than G9** according to the COLTO classification. These poor results are attributed to the high PI values, low grading modulus and poor compaction characteristics.

The soils could be utilized as general fill for bulk earthworks should the necessary standards be adhered to during placement and compaction of cohesive soils. Specific attention should be placed on moisture control, proper equipment selection and layer thickness.

Cohesive soils exhibit a high sensitivity to moisture content. Therefore, it's crucial to ensure that these soils maintain a water content close to the optimum level (preferably) during the paving process. This is most effective during dry weather conditions and when the soil remains firm to prevent subsequent softening.

To achieve proper compaction of cohesive soils, the use of vibration or oscillation at relatively high amplitudes, up to 1.8 mm, is recommended. Heavy padfoot rollers are particularly suitable for this task as they knead the soil, increasing its surface area. This facilitates easier evaporation of water content within the soil. Consequently, the soil gains greater rigidity, enhancing its load-bearing capacity.

Before compaction, cohesive soils can be significantly improved or stabilized through techniques like soil stabilization (e.g., using lime to decrease water content) or soil improvement (e.g., using cement to enhance load-bearing capacity). These measures contribute to better overall performance and durability of the paved surfaces.

It is recommended that material be imported for any engineered layer works in foundations and/or roads.

6.3. Bearing Capacity

Observations during the field work phase indicates that the soils encountered across the site exhibits at least a stiff consistency, typically increasing to very stiff/hard with depth.

No structures should be placed on the uncontrolled fill encountered sporadically across the site.

The upper transported soils encountered do depths of approximately 1.0 m across the site is not deemed a suitable founding horizon in its natural state, due to its proclivity for moisture change and its subsequent expected movements.

According to Look (2014), the cohesive **reworked residual soils** (encountered from below the transported soils) exhibiting a stiff consistency, exhibits a bearing capacity of between **100 and 200 kPa**, whilst Huntly (1990) proposes a slightly more conservative bearing capacity of **75 to 150 kPa**.

The **residual & weathered soils** (encountered from below the reworked horizon) exhibiting a very stiff/hard consistency, exhibits a bearing capacity of at least **150 kPa** in its natural state.

The effect that an increase in moisture content has on the strength of the material can clearly be seen with the laboratory tested CBR results. The DCP tests, conducted at in-situ moisture content, indicates that the material exhibits a much higher CBR value than the laboratory tested CBR results. The main reason for this drastic reduction in the lab tested results are that the **lab specimen** is tested under **saturated** conditions. This provides clear insight into the reduction in strength of the on-site soils upon inundation with water.

For this reason, foundation trenches should be well compacted with adequate site drainage installed, to prevent large scale moisture changes below the foundations which will lead to softening of the loadbearing strata.

Foundations should also not be placed in the upper 1.0 m of soil, as this area is typically the most prone to large scale moisture changes.

No information regarding planned foundation levels and imposed loads were provided at the time of compiling this report, as such, no specific information can be provided on the expected bearing capacities at each proposed structure.

Final bearing capacity values will be directly related to the size, shape and depth of the final foundation.

7. Proposed Developmental Phase

7.1. Phase A

The phase incorporates 6 additional Secondary Settling Tanks (SSTs) to operate together with the existing Biological Reactor A.

6 DPSH tests were conducted within this proposed developmental area (or at least in close proximity) along with 3 Test Pits. The following test numbers where conducted within this area.

Test Pit	DPSH
TP 8	DPSH 8.1
TP 9	DPSH 8.2
TP 13	DPSH 9.1
	DPSH 9.2
	DPSH 13.1
	DPSH 13.2

Deep fill (2.6 m) was encountered in the vicinity of TP8, whilst completely weathered granitic bedrock was encountered at shallow depth across the area proposed for the secondary settling tanks.

7.2. Phase B

The phase incorporates the construction of a biological reactor.

8 DPSH tests were conducted within this proposed developmental area (or at least in close proximity) along with 3 Test Pits. The following test numbers where conducted within this area.

Test Pit	DPSH
TP 10	DPSH 10.1
TP 11	DPSH 10.2
TP 12	DPSH 11.1
	DPSH 11.2
	DPSH 11.3
	DPSH 12.1
	DPSH 12.2
	DPSH 12.3

DPSH 11.3 was conducted on the embankment of the exiting pond. This first 3.6 m of the test proved soft to firm results, deemed to be the material within the embankment. Very stiff consistency was encountered at a depth of 3.6 m. This is deemed to be the depth of weathered granite. The test was advanced to 6.3 m below existing ground level. DPSH 11.1 and 11.2 encountered weathered granitic bedrock was encountered at depths of approximately 2.4 m.

7.3. Phase C

Phase C of the upgrade will be to construct Module C's reactor and 4 additional SSTs.

8 DPSH tests were conducted within this proposed developmental area (or at least in close proximity) along with 3 Test Pits. The following test numbers where conducted within this area.

Test Pit	DPSH
TP 11	DPSH 11.1
TP 12	DPSH 11.2
TP 13	DPSH 11.3
	DPSH 12.1
	DPSH 12.2
	DPSH 12.3
	DPSH 13.1
	DPSH 13.2

DPSH 11.3 was conducted on the embankment of the exiting pond. This first 3.6 m of the test proved soft to firm results, deemed to be the material within the embankment. Very stiff consistency was encountered at a depth of 3.6 m. This is deemed to be the depth of weathered granite. The test was advanced to 6.3 m below existing ground level. DPSH 11.1 and 11.2 encountered weathered granitic bedrock was encountered at depths of approximately 2.4 m.

Completely weathered granitic bedrock was encountered at shallow depth across the area proposed for the secondary settling tanks

7.4. Phase D

The phase will see the construction of the four PSTs, primary sludge pumpstation and three additional anaerobic digestors. The existing PSTs will be refurbished and used as gravity thickeners for the primary sludge.

6 DPSH tests were conducted within this proposed developmental area (or at least in close proximity) along with 4 Test Pits. The following test numbers where conducted within this area.

Test Pit	DPSH
TP 1	DPSH 1
TP 2	DPSH 2.1
TP 3	DPSH 2.2
TP 5	DPSH 3.1
	DPSH 3.2
	DPSH 5

Deep fill (2.2 m) was encountered in the vicinity of TP3, whilst completely weathered granitic bedrock was encountered at depths of at least 2.6 m across the area.

8. Geotechnical Site Classification

8.1. General

The results of this study reveal that the site exhibits geotechnical characteristics that may require the implementation of specific design and precautionary measures to reduce the risk of structural damage due to adverse geotechnical conditions.

The following constraints needs to be considered;

- The results of this investigation reveal that the soils covering the site may undergo a
 degree of heave and/or consolidation (i.e. loss and gain of volume) under loading
 or when saturated; requiring that structures be adequately strengthened to prevent
 structural damage due to differential settlement beneath foundations
- In its natural state, the site classifies as C1/C2/H and Localized Puncontrolled fill, according to the NHBRC Site Classification.
- Differential movements will be exaggerated due to heave and shrinkage when moisture conditions under structures change
- Cohesive soils across the site are sensitive to moisture changes. These changes will
 in turn affect the consolidation and shear strength properties of the soil, resulting in
 higher settlement and lowering of bearing capacity.
- Presence of ferruginized material at shallow depth, indicating the presence of a seasonal **fluctuating groundwater table** or excessive soil moisture movement.
- Due to its variable and organic nature, it is recommended that the upper transported
 material across the site be removed to a depth of at least 300 mm, beyond the
 perimeter of the proposed developments. Variation in this depth can occur and should
 be assessed during the planned earthworks.
- Ponding of surface water are encountered across the site. These conditions will hamper moving of heavy machinery.

However, these characteristics do not disqualify the site from being used for the proposed development, but rather require the implementation of site-specific precautionary measures.

8.2. Groundwater Occurrence

Groundwater seepage was observed in a few test pits across the site. This seepage is categorized as a perched groundwater table, and it was generally identified as slow to moderate flow. It is mainly present within the pedogenic horizon and the upper alluvial soils. Perched groundwater occurs when an impermeable layer restricts water from infiltrating deeper into the aquifer, causing it to move laterally through the strata.

The natural soils also tested to be moist in its natural state. In general, the on-site soils have a low permeability.

Due to the variability in bedrock depth, this perched water table could also be encountered at various depths.

8.3. Soil Excavatability

The TLB-type light mechanical excavator, was generally able to excavate trial pits to depths of at least 2.5 m with little or no difficulty. For this reason, **no problems** are foreseen during the excavation of **shallow foundations** or **deep service trenches** to a depth of at least 2.50 m below the existing ground level, through the use of an excavator with similar power.

• The excavation type to a depth of at least 2.50 m below the existing ground level is deemed to be **Soft Excavation**. (SANS 1200D).

Refusal of DPSH penetration testing can be associated with the presence of medium hard rock to hard rock By examining the DPSH tests and correlating their refusal depths to difficulty in excavation, it can be noted that variable excavation depth could be noted. The DPSH tests experienced refusal at depths of between 3.3 and 8.7 m below ground level.

8.4. Slope Stability and Stability of Temporary Cuttings

During the time of the investigation, no evidence was noted of any specific site stability problems.

The planned development envisages major earthworks across the site. These earthworks will be in the form of deep cuts.

The major cut slope design parameters are slope geometry, soil shear strength and predicted or measured groundwater levels. For cohesionless soil, stability of a cut slope is independent of height and therefore slope angle becomes the key parameter of concern. For cohesive (ϕ = 0) soils, the height of the cut becomes the critical design parameter. For c'- ϕ ' and saturated soils, slope stability is dependent on both slope angle and height of cut.

Due to the cohesive nature of the on-site soils, shearbox tests were not completed on any samples. Instead, the USCS classification will be utilized to gain insight into typical geotechnical parameters associated with these cohesive soils.

The residual soils classified as low plasticity clays (CL), which typically have cohesion values of 13 kPa and internal angles of friction of 28°.

The high plasticity silty (ML) residual granites typically host cohesion values of 5 kPa and internal angles of friction of 24°.

According to Brink et al, the residual granitic soils typically host cohesion values of 22.6 kPa and friction angles of 33°.

Typically, short term cuts in these overconsolidated cohesive soils will be stable at steep angles, up to vertically unsupported. However, in long term, these values decrease considerably due to a decrease in cohesion and an increase in friction (safe cut slops as low as 25°). This is due to the change in water content and its effect on the pore water pressure and resultant effective stress. Short-term stability in cohesive soils is defined by their undrained shear strength. Experience shows that in the long run only those slopes are stable where the inclination is smaller than the soil's angle of internal friction.

According to Abramson et al (2001), long term cut slopes stability is also dependent on seepage forces and therefore ultimate groundwater level in the slope. The main obstacle to predict the stability is the correct modelling of the recharge in the vicinity of the cut slope.

Also critical to the proper design of cut slopes is the incorporation of adequate surface and subsurface drainage facilities to reduce the potential for future stability or erosional problems.

The reworked residual granite and residual granite will be stable in temporary excavations, i.e. if they remain dry. However, experience has shown that, when subjected to standing water, these clay-silt mixtures soften up, which often leads to slumping that could result in complete failure of the excavations, if appropriate measures are not taken.

It is important, therefore, that dewatering measures be implemented wherever open unsupported excavations will be subjected to flooding. It is imperative that appropriate safety measures be taken to provide safe working conditions in excavations deeper than 1,5m

In general safe battering to 45° is proposed as a safe cut-back for deep excavations.

It is recommended that any deep cuts be assessed and monitored by a competent person periodically.

8.5. Site Classification

In the light of the results of this study, the site can be subdivided into a SINGLE geotechnical entity/development potential zone. The site carries a dual class, due to both heave and consolidation/collapse expected under loads.

The site Classifies as C1/C2/H and localized P^{uncontrolled fill} according to the NHBRC Site Classification System.

Please note that the classification is based on the existing ground conditions at the time of the investigation.

8.6. Erodability of material

The following are findings on the relationships between different properties and erodibility parameters of soil:

- An increase in percentage clay leads to an increase in erosion resistance of soil
- An increase in PI in general leads to an increase in erosion resistance (there are few exceptions)
- Increase in Plastic Limit leads to an increase in erosion resistance in fine grained soils
- Steep slopes increase flow velocities and as such decrease erosion resistance.
- Dispersive soils (typical to those of granitic soils) tend to be less erosion resistant.

Based on the above considerations combined with the knowledge of the granitic soils in this region, it can be noted that the soils encountered across the site are prone to erosion.

The following can be done to minimize erosion of problematic soils during the construction phase.

8.6.1. Dispersive soils

Typical of granitic soils encountered across the site

- Minimize longitudinal gradient of excavations
- Consider treating dispersive subsoils with gypsum prior to backfilling to minimise risk of tunnel erosion
- Backfill should be placed to equivalent compaction of surrounding soil. Over-Compaction can cause up-slope groundwater flows to be diverted along the up-slope side of the backfilled trench, possibly leading to tunnel erosion. Under-compaction can lead to tunnel erosion adjacent to the pipe or along the down-slope side of backfilled trench.

8.6.2. Expansive soils

Reworked Residual material encountered across the site.

- Minimize mixing of expansive material with other material.
- Wherever practical, ensure the most problematic material is the first to be backfilled.
- Compact the spoil to an equivalent compaction to the surrounding soil to reduce risk of tunnel erosion.

Inadequate temporary erosion and drainage control measures can result in severe damage to backfilled trenches. Recently backfilled trenches are especially vulnerable to both surface and sub-surface (tunnel) erosion because of the low shear strength of the recently disturbed soil, even if some degree of compaction has been applied to the backfill. The risk of these problems occurring increases if the soils are dispersive.

9. Foundation Recommendations and Solutions

The foundation solutions will vary dependant on the final founding horizon and anticipated effective loads of each structure.

Under no circumstances should foundations be placed in/on untreated uncontrolled fill, natural transported or reworked residual subsoils unless it has been specifically engineered to support structural foundations. Should foundations be planned within these horizons, it is recommended that foundations be stiffened with articulation joints. Maximum bearing pressure should not exceed 50 kPa. RC rafts with the same detail as above can also be utilized.

For single- and double-storey structures (or structures with similar loads), the recommended foundation type is reinforced concrete strip/pad foundations. The foundation medium should be compacted to a minimum of 95% Mod AASHTO density, or achieve a penetration of less than 20mm per blow of a Dynamic Cone Penetrometer (DCP). It is advised to have a recommended founding depth of 1 meter below the natural ground level (NGL) (or at least below the transported soils). This will ensure stable and reliable foundation system for the specified building type.

To limit settlement, bearing pressures should not exceed a maximum of 150 kPa. For structures with greater weight, deeper foundations (to weathered granite) are advised or the founding medium can be improved by introducing a layer of imported structural fill (to the engineers' design). Additionally, the use of light reinforced concrete rafts may be considered. It is paramount to inspect all foundation trenches before casting concrete.

It must be noted that differential settlement is assumed to equal 75 % of the total settlement. The relaxation of some of these requirements, e.g. the reduction or omission of steel or articulation joints, may result in a Category 2 level of expected damage.

Where the expansive clay soils will remain as portions of the subgrade, care must be taken to ensure they remain in a moist and fully swelled condition. This is critical to all areas of the site. Covering over dried out expansive clay soils will likely result in swell/heave issues when these re-swell during the wet winter months

The final foundation designs are however the responsibility of the design engineer. It is recommended that the design engineer discuss their designs with the geotechnical specialist to ensure alignment to presented information.

It is understood that the development will follow a phased construction approach. It is recommended that during this time, TerraGeo be involved in the construction process to confirm the conditions encountered during this investigation.

10. Limitations

The extent of the investigations undertaken is deemed adequate, within the time and budget constraints, to present an overview of the geotechnical conditions across the investigation site.

It must be borne in mind that the overall interpretation of geotechnical conditions is based upon point information derived from the respective test positions and that conditions intermediate to these have been inferred by interpolation, extrapolation and professional judgement.

The foundation solutions will vary dependant on the final founding horizon and anticipated effective loads of each structure. These were not known during the reporting phase, as such, this should be discussed with the geotechnical specialist when the data becomes available.

It is recommended the author be appointed to inspect the earthworks and foundation excavations during the development of the site to confirm founding depths and validate the recommendations provided in this report.

Final designs are the responsibility of the design engineer.

MAPS

APPENDIX A

A.1 Test Pit Profiles

Soil Profile for Test Pit TP4

slightly moist; brown; medium dense; intact; silty sand with scattered cobbles; Transported; Not Sampled.

slightly moist; light orange brown mottled red speckled black; medium dense; intact; clayey silty sand with scattered quartz gravel; Nodular ferricrete; Not Sampled.

moist; orange brown patched grey; stiff; slickinsided; sandy/clay silt; Reworked residual granite; Bulk Sample No. TP4; Disturbed Sample No. TP4.

slightly moist; orange streaked red; very stiff; stratified; sandy/clay silt; Micaceous granite residual; soapy texture; Not Sampled.

Test Pit Notes

Coordinates:	33,993754°S 22,422824°E
Method of Excavation:	TLB Type Light Mechanical Excavator- CAT
Excavation Character:	Excavation Stopped
Date Excavated:	2024/04/15
Date Profiled:	2024/04/15
Groundwater Seepage:	N/A
Samples Extracted:	1 Bulk Sample, 1 Disturbed Sample
Notes:	N/A
Profiled by:	Eugene van der Walt (Pri.Sci.Nat)

Terra Geotechnical Gwaing WWTW **Material Present in Test Pit TP4**

Terra Geotechnical Gwaing WWTW

Surroundings of Test Pit TP4

Terra Geotechnical Gwaing WWTW Material Present in Test Pit TP7

Terra Geotechnical Gwaing WWTW

Surroundings of Test Pit TP7

Terra Geotechnical Gwaing WWTW **Surroundings of Test Pit TP10**

APPENDIX B

B.1 Laboratory Test Results

Materials Testing Laboratory

OUTENIQUA 6 Mirrorball Street, George : PO Box 3186, George Industria, 6536

R-CBR-1-9 Jun-23

—LAB—	eniqualab.co.za T0347		
	Terra Geotechnical	Project :	Gwaing WWTW
	7 Albatros Street	Date Received :	18/04/2024
Gustomer .	Still Bay	Date Reported :	20/05/2024
	6674	Req. Number :	1219/24
Attention :	Eugene van der Walt	No. of Pages :	1 of 10

TEST REPORT **CALIFORNIA BEARING RATIO**

	ole Position (SV)	1				
D	old i dollidir (OV)	TP1	COLTO:			88280
Depth (mm)		1100-1800	Not			Sieve Analysis
	ole No	88280	Classified			100
Material Source Colour Soil Type Classification		In-sit	u			₽ 80
rial	Colour	Light Reddish Orange				is se 60
ate	Soil Type	Silty C				B 40
ž	Classification	Existin				and
	Glassification			ANS 3001 Method	GR1)	Percentage 80 88 80 88 80 80 80 80 80 80 80 80 80
7	75 mm	100		1	1	0.0 0.1 1.0 10.0 100.0
	63 mm	100	Opinion			Sieve Size
g F	50 mm	100	U			587545355W (II
	37.5 mm	100				CBR Chart
286	28 mm	100				
e 2	20 mm	100				3
tag	14 mm	100				% 1 90 92 94 96 98 100 102
	5 mm	99				O 90 92 94 96 98 100 102
erc o	2 mm	99				
م م	0.425 mm	90				0
	0.425 mm 0.075 mm	90 69.2				Compaction (%)
	0.075 mm		-di-stans (C	ANC 2004 Matha	I DDE\	201711000000000000000000000000000000000
O1:	in a Mandalan *	0.42	idicators - (S	ANS 3001 Method	z PR5)	
	ing Modulus *					Sieve Analysis
Coars	se Sand Soil-Mortar (%)	9	Limite (CA)	NC 0004 Mashad (2010)	
Atterberg Limits - (SANS 300				NS 3001 Method (aR10)	<u> </u>
Liquid Limit (%) Plasticity Index (%)		21				<u>a</u> 60
		7		Bus 80 Pag 60 Pag 40 Pag 40 Pag 20 Pag 20 Pag 40 Pag 20 Pa		
Linea	inear Shrinkage (%) 3.5 Material Strength - (SANS 3001 Method GR30,GR40 - SCALPED)				20	
			- (SANS 3001	Method GR30,GR4	0 - SCALPED)	0
Ö /	Max Dry Density (kg/m³)	1792				0.0 0.1 1.0 10.0 100.0 Sieve Size
_	Optimum Moisture Content (%)	15.5				0400400040000
IV	Mould Moisture Content (%)	15.7				CBR Chart
	Relative Compaction (%)	100.0				10
	Swell (%)	1.1				
	Relative Compaction (%)	94.4				CBR (%)
	Swell (%)	1.4				8
	Relative Compaction (%)	91.0				
- 8	Swell (%)	1.6				1
	@100% Max Dry Density	5				0 2 Compaction (%)
œ (@	@98% Max Dry Density	4				United States of the Control of the
	@95% Max Dry Density	2				• 88280
(6	@93% Max Dry Density	1				Wearing Course Graph (TRH 20)
@	@90% Max Dry Density	1		Condition		550
		9 450 - Suppery				
Insi	Insitu Moisture Content (%)			350 Good (May be Dusty)		
	Soil Classification Of The Material Based Only On The Tests Results Above					© 250 - Erodible
COLTO Specification:		Not Classified				# 150 - Good
AASHTO System		A-4				0 1 1 1 1 1 1 1 1 1 1 1 1
	Unified System	CL-ML				0 4 8 12 16 20 24 28 32 36 40 44 48
	ests marked with a (*) are NOT SANAS Accredited results.					Grading Coefficient (Gc)

· Specimens delivered to Outeniqua Lab in good order.

Ruaan Lesch Technical Signatory

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

Copyrignt © 2014 Liewelyn rearncote. All Hights Reserved.

The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (×), non compliant (×) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, issue 2:20 June 2007 Section 2.

The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliant (×) or non compliant (×) based on a 95% level of confidence with reference to SAMM GUIDANCE 1, issue 2:20 June 2007 Section 2.

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Director of Outeniqua Lab (Pty) Ltd.

Measuring Equipment, Insceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

Shiftle every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab (Pty) Ltd nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

Director:

Liestoper Reserved.

Civil Eng.) & RSC Hone (Transport)

Director:

Materials Testing Laboratory

OUTENIQUA 6 Mirrorball Street, George : PO Box 3186, George Industria, 6536 Tel: 044 8743274 : Fax: 044 8745779 : e-mail: llewelyn@outeniqualab.co.za R-CBR-1-9 Jun-23

T0347

	Terra Geotechnical	Project :	Gwaing WWTW
Customer:	7 Albatros Street	Date Received :	18/04/2024
Gustomer.	Still Bay	Date Reported :	20/05/2024
	6674	Req. Number :	1219/24
Attention :	Eugene van der Walt	No. of Pages :	2 of 10

TEST REPORT **CALIFORNIA BEARING RATIO**

		<u> </u>	•	EARING RAII	_	
San	nple Position (SV)	TP2	COLTO:			88281
Depth (mm)		1400-1800	Not			Sieve Analysis
	nple No	88281	Classified			100
<u>_s</u>	Source Colour Soil Type Classification	In-sit				<u>g</u> ° 80
- <u>r</u>	턴 Colour	Light Reddisl	n Orange			8 60 E
ate	ຼື Soil Type	Lean Clay w	ith Sand			9 B 40
Σ	Classification	Existin	ng			Parentiage Passing 25
\Box	Material Indicators - (SANS 3001 Method GR1)			<u>a</u>		
	75 mm	100	io			0.0 0.1 1.0 10.0 100.0
	63 mm	100	Opinion			Sieve Size
Passing	50 mm	100				CBR Chart
SS	37.5 mm	100				10 CON CHART
	28 mm	100				
Percentage	20 mm	100				(%)
ıta	14 mm	100				© 1 90 94 96 98 100 102
je,	5 mm	99				
er	2 mm	99				
۱ ـ	0.425 mm	94				0
	0.075 mm	71.9				Compaction (%)
		Material II	ndicators - (S	ANS 3001 Method	PR5)	
Gra	ding Modulus *	0.36				Sieve Analysis
Coa	rse Sand Soil-Mortar (%)	5				100
	Atterberg Limits - (SANS 3001 Method GR10)					<u> </u>
	uid Limit (%)	30				6 60
Plasticity Index (%)		10				96 40
Line	ear Shrinkage (%)	5.0		80 Bo Discourage		
		Material Strength	- (SANS 3001	Method GR30,GR4	0 - SCALPED)	0
	Max Dry Density (kg/m3)	1925				0.0 0.1 1.0 10.0 100.0 Sieve Size
MDD	Optimum Moisture Content (%)	8.8				Sieve Size
_	Mould Moisture Content (%)	8.9				CBR Chart
A	Relative Compaction (%)	100.0				10
	Swell (%)	1.0				
В	Relative Compaction (%)	95.2				CBR (%)
_	Swell (%)	3.8				S C C C C C C C C C C C C C C C C C C C
c	Relative Compaction (%)	91.2				
Ľ	Swell (%)	5.3				1
	@100% Max Dry Density	2				0 2 Compaction (%)
<u>~</u>	@98% Max Dry Density	1				
B	@95% Max Dry Density	1				• 88281
ľ	@93% Max Dry Density	1				Wearing Course Graph (TRH 20)
<u> </u>	@90% Max Dry Density	0				550 T
L.	Material Condition					Good Steppery Stepper
ln	situ Moisture Content (%)					350 - Good 2 300 - (May be Dusty)
	Soil Classification Of The Material Based Only On The Tests Results Above				250 - Erodible D 200 - Materials Ravels	
L_	COLTO Specification:	Not Classified				32 150 Good
	AASHTO System	A-4				0
<u> </u>	Unified System	CL				0 4 8 12 16 20 24 28 32 36 40 44 48 Grading Coefficient (Gc)
Tes	ts marked with a (*) are N		Grading Coefficient (GC)			

· Specimens delivered to Outeniqua Lab in good order.

Ruaan Lesch Technical Signatory For Outeniqua Lab (Pty) Ltd.

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

Copyrignt © 2014 Liewelyn rearncote. All Hights Reserved.

The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (×), non compliant (×) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, issue 2:20 June 2007 Section 2.

The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliant (×) or non compliant (×) based on a 95% level of confidence with reference to SAMM GUIDANCE 1, issue 2:20 June 2007 Section 2.

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Director of Outeniqua Lab (Pty) Ltd.

Measuring Equipment, Insceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

Shiftle every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab (Pty) Ltd nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

Director:

Liestoper Reserved.

Civil Eng.) & RSC Hone (Transport)

Director:

Materials Testing Laboratory

OUTENIQUA 6 Mirrorball Street, George : PO Box 3186, George Industria, 6536 Tel: 044 8743274 : Fax: 044 8745779 : e-mail: llewelyn@outeniqualab.co.za R-CBR-1-9 Jun-23

T0347

	Terra Geotechnical	Project :	Gwaing WWTW
Customer:	7 Albatros Street	Date Received :	18/04/2024
Gustomer .	Still Bay	Date Reported :	20/05/2024
	6674	Req. Number :	1219/24
Attention :	Eugene van der Walt	No. of Pages :	3 of 10

<u>TEST REPORT</u> CALIFORNIA BEARING RATIO

Cor	anla Dacition (C)()			LANING NATI		00000
	nple Position (SV)	TP4	COLTO:			88283
Depth (mm)		1400-1800	Not			Sieve Analysis
	nple No	88283	Classified			100
<u>s</u>	Source	In-sit				g 80
ria i	Colour	Light Brown	Orange			8 60 S
ate	୍ଡି Soil Type	Sandy Elas	stic Silt			© 40
≥	Source Colour Soil Type Classification	Existin	ng			Page 10
\Box		Material Ir	ndicators - (S	ANS 3001 Method	GR1)	₫ ²⁰
	75 mm	100				0.0 0.1 1.0 10.0 100.0
	63 mm	100	Opinion			Sieve Size
ng	50 mm	100				CBR Chart
Passing	37.5 mm	100				10 CBN Cliant
Ра	28 mm	100				
e g	20 mm	100				%
ıtaçı	14 mm	99				СВЯ (%)
Percentage	5 mm	94				ľ
erc	2 mm	85				
₾	0.425 mm	78				90 92 94 96 98 100 102
	0.075 mm	69.2				Compaction (%)
\vdash	0.070 11111		ndicators - (S	ANS 3001 Method	PR5)	
Gra	ding Modulus *	0.68	(0	I I I I I I I I I I I I I I I I I I I	1	D2 51 01 N
	rse Sand Soil-Mortar (%)	9				Sieve Analysis
-	noc carra con Mortar (70)		Limits - (SAI	NS 3001 Method (3B10)	5 80 S
Lia	uid Limit (%)	72	Zimito (Gra	l local method (Dis 80 80 80 80 80 80 80 80 80 80 80 80 80
	sticity Index (%)	28				- B
	ear Shrinkage (%)	14.0				9 40
	var emmage (70)	- 5 20				
	Max Dry Density (kg/m3)	1690	(67.1.10 000)	Method GR30,GR4		0.0 0.1 1.0 10.0 100.0
MDD	Optimum Moisture Content (%)	19.1				Sieve Size
Σ	Mould Moisture Content (%)	19.2				
	Relative Compaction (%)	100.0				CBR Chart
Α	Swell (%)	6.9				**
	Relative Compaction (%)	95.7				9
В	Swell (%)	7.1				CBR (%)
	Relative Compaction (%)	91.7				5
C	Swell (%)	7.4				
-	@100% Max Dry Density	2				1 0 2
1	@98% Max Dry Density	2				Compaction (%)
CBR	@95% Max Dry Density	1				• 88283 ■
2	@93% Max Dry Density	1				
	@90% Max Dry Density	1				Wearing Course Graph (TRH 20)
<u> </u>	w30 % Wax Dry Defisity	1	Material	Condition		
۱'n	Material Condition Insitu Moisture Content (%)				# 400 - # 350 - # Good	
10		onification Of The B	Actorial Passal	Only On The Tests	Populto Aberra	2 300 - (May be Dusty)
 	COLTO Specification:	Not Classified	nateriai based	I I I I I I I I I I I I I I I I I I I	nesults ADOVE	D 200 - Materials Ravels
<u> </u>						100
	AASHTO System	A-7-5				0 4 8 12 16 20 24 28 32 36 40 44 48
<u> </u>	Unified System	MH				Grading Coefficient (Gc)
	Fests marked with a (*) are NOT SANAS Accredited results. Grading Coefficient (Gc) Grading Coefficient (Gc)					

· Specimens delivered to Outeniqua Lab in good order.

Ruaan Lesch Technical Signatory

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

Copyrignt © 2014 Liewelyn rearncote. All Hights Reserved.

The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (×), non compliant (×) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, issue 2:20 June 2007 Section 2.

The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliant (×) or non compliant (×) based on a 95% level of confidence with reference to SAMM GUIDANCE 1, issue 2:20 June 2007 Section 2.

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Director of Outeniqua Lab (Pty) Ltd.

Measuring Equipment, Insceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

Shiftle every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab (Pty) Ltd nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

Director:

Liestoper Reserved.

Civil Eng.) & RSC Hone (Transport)

Director:

Materials Testing Laboratory

OUTENIQUA 6 Mirrorball Street, George : PO Box 3186, George Industria, 6536 Tel: 044 8743274 : Fax: 044 8745779 : e-mail: llewelyn@outeniqualab.co.za R-CBR-1-9 Jun-23

—LAB—	eniqualab.co.za T0347		
	Terra Geotechnical	Project :	Gwaing WWTW
Customer :	7 Albatros Street	Date Received :	18/04/2024
Gustomer.	Still Bay	Date Reported :	20/05/2024
	6674	Req. Number :	1219/24
Attention :	Eugene van der Walt	No. of Pages :	4 of 10

TEST REPORT **CALIFORNIA BEARING RATIO**

			•	PEANING NATI	<u> </u>		
	nple Position (SV)	TP6	COLTO:			88285	
	oth (mm)	900-1800	Not			Sieve Analys	is
San	nple No	88285	Classified			100	
S	5 Source	In-sit	u		,	말 80	
<u> </u>	Tolour Colour	Light Brown	Orange			isse 60	
Materials	Source Colour Soil Type Classification	Clay				Borcentage Passing	
l ≊	Classification	Existi				enta 40	
_	- Classification			SANS 3001 Method	I GR1)	<u>§</u> 20	
\vdash	75 mm	100		A TO COOT MICETION	i ditti)	0.0 0.1 1.0	10.0 100.0
	63 mm	100	Opinion			Sieve Size	
ρ	50 mm	100	0			SAR-202000 /	9
Passing	37.5 mm	100				CBR Char	t
as	28 mm	100					
e	20 mm	100		-		9	
ag		99				СВЯ (%)	
ent	14 mm	99				ŭ	
Percentage	5 mm			-			
P	2 mm	84		-		90 92 94 96	98 100 102
	0.425 mm	73				90 92 94 96 Compaction (
	0.075 mm	68.9	L., ,			20022	9810
_			ndicators - (SANS 3001 Method	1 PR5)		
Gra	ding Modulus *	0.75				Sieve Analys	is
Coa	arse Sand Soil-Mortar (%)	13	l				
			Limits - (SA	NS 3001 Method (3R10)	20 Percentage Passing 60 Passing	
	uid Limit (%)	43				6 60 −−−−−	
	sticity Index (%)	23				di 40	
Line	ear Shrinkage (%)	11.5				20	
			- (SANS 3001	Method GR30,GR4	0 - SCALPED)	0	
	Max Dry Density (kg/m³)	1598				0.0 0.1 1.0 Sieve Size	10.0 100.0
MDD	Optimum Moisture Content (%)	23.1				20001010000	
-	Mould Moisture Content (%)	23.2				CBR Char	t
A	Relative Compaction (%)	100.0				10	
	Swell (%)	8.1					
В	Relative Compaction (%)	95.4				CBR (%)	
	Swell (%)	8.4				5	
c	Relative Compaction (%)	91.6					
Ľ	Swell (%)	8.8				1	
	@100% Max Dry Density	4				0 Compaction (94)
<u>~</u>	@98% Max Dry Density	4				Compaction (70)
B	@95% Max Dry Density	4				• 88285	
٦	@93% Max Dry Density	4				Wearing Course Gra	iph (TRH 20)
	@90% Max Dry Density	3				550 T	.p (1111 20)
			Material	Condition		G 500 Sippery	
In	situ Moisture Content (%)					350 - Good (May be Du	eto
	Soil Cla	ssification Of The I	Material Based	Only On The Tests	Results Above	250 - Erodible (May be Du	sty) Ravels
	COLTO Specification:	Not Classified				200 - Materials Good	
	AASHTO System	A-7-6				50 Ravels and Cor	rugates
	Unified System	CL				0 4 8 12 16 20 24 2	
Tes	ts marked with a (*) are N		edited result	S.	•	Grading Coefficie	nt (Gc)

· Specimens delivered to Outeniqua Lab in good order.

Ruaan Lesch Technical Signatory

- Copyright © 2014 Llewelyn Heathcote. All Rights Reserved. Copyrignt © 2014 Liewelyn rearncote. All Hights Reserved.

 The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (×), non compliant (×) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, issue 2:20 June 2007 Section 2.

 The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliant (×) or non compliant (×) based on a 95% level of confidence with reference to SAMM GUIDANCE 1, issue 2:20 June 2007 Section 2.

 This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Director of Outeniqua Lab (Pty) Ltd.

 Measuring Equipment, Insceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

 Shiftle every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab (Pty) Ltd nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

 Director:

 Liestoper Reserved.

 Civil Eng.) & RSC Hone (Transport)

Director:

OUTENIQUA LAB (Pty) Ltd. **Materials Testing Laboratory**

OUTENIQUA LAB

6 Mirrorball Street, George : PO Box 3186, George Industria, 6536 Tel: 044 8743274 : Fax: 044 8745779 : e-mail: llewelyn@outeniqualab.co.za R-CBR-1-9 <u>Jun-23</u>

T0347

	Terra Geotechnical	Project :	Gwaing WWTW
Customer:	7 Albatros Street	Date Received :	18/04/2024
Gustomer .	Still Bay	Date Reported :	20/05/2024
	6674	Req. Number :	1219/24
Attention :	Eugene van der Walt	No. of Pages :	5 of 10

TEST REPORT **CALIFORNIA BEARING RATIO**

Specimens delivered to Outeniqua Lab in good order.

Ruaan Lesch Technical Signatory

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (*), non compliant (*) and uncertain (*) opinion indica approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2: 20 June 2007 Section 2.

2. The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliant (*) or non compliant (*) based on a 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

3. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Director of Outeniqua Lab (Pty) Ltd.

4. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the terms tested and are an indication only of the sample provided and/or taken.

5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab (Pty) Ltd nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroreous conclusions drawn therefrom or for any consequence thereof.

Materials Testing Laboratory

OUTENIQUA 6 Mirrorball Street, George : PO Box 3186, George Industria, 6536 Tel: 044 8743274 : Fax: 044 8745779 : e-mail: llewelyn@outeniqualab.co.za R-CBR-1-9 <u>Jun-23</u>

T0347

	Terra Geotechnical	Project :	Gwaing WWTW
Customor	7 Albatros Street	Date Received :	18/04/2024
1	Still Bay	Date Reported :	20/05/2024
	6674	Req. Number :	1219/24
Attention :	Eugene van der Walt	No. of Pages :	6 of 10

TEST REPORT **CALIFORNIA BEARING RATIO**

Specimens delivered to Outeniqua Lab in good order.

Ruaan Lesch Technical Signatory

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (×), non compliant (×) and uncertain (*) opinion indica approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

2. The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliant (*) or non compliant (*) based on a 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

3. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Director of Outeniqua Lab (Pty) Ltd.

4. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the terms tested and are an indication only of the sample provided and/or taken.

5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab (Pty) Ltd nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroreous conclusions drawn therefrom or for any consequence thereof.

Director:

Materials Testing Laboratory

OUTENIQUA 6 Mirrorball Street, George : PO Box 3186, George Industria, 6536

R-CBR-1-9

Jun-23

—LAB—	eniqualab.co.za T0347		
	Terra Geotechnical	Project :	Gwaing WWTW
Customer :	7 Albatros Street	Date Received :	18/04/2024
	Still Bay	Date Reported :	20/05/2024
	6674	Req. Number :	1219/24
Attention :	Eugene van der Walt	No. of Pages :	7 of 10

TEST REPORT **CALIFORNIA BEARING RATIO**

			•	EARING RAII	_	
	nple Position (SV)	TP11	COLTO:			88290
Depth (mm)		2200-2500	Not			Sieve Analysis
	nple No	88290	Classified			100
S	Source Colour Soil Type Classification	In-sit	u			₽ 80
ria B	Colour	Light Br	own			Parentiage Passing 20
ate	Soil Type	Silty Sa	and			e Di 40
ž	Classification	Existin				40 40
\vdash	_ classification			ANS 3001 Method	(GR1)	
\vdash	75 mm	100		I I I I I I I I I I I I I I I I I I I	1	0.0 0.1 1.0 10.0 100.0
	63 mm	100	Opinion			Sieve Size
g	50 mm	100	0			1000000 0
Passing	37.5 mm	100				CBR Chart
ä	28 mm	100			-	
	20 mm	100				(%
tag	14 mm	100				CBR (%)
Percentage	5 mm	95				°
S	2 mm	83				
۵	0.425 mm	66				90 92 94 96 98 100 102
	0.075 mm	48.4				Compaction (%)
<u> </u>	0.075 11111		ndicators /S	ANS 3001 Method	1 DDE/	
Gro	ding Modulus *	1.03	idicators - (3	ANS SOUT MELITOR	i Fno)	
Coo	arse Sand Soil-Mortar (%)	21				Sieve Analysis
Coa	arse Sariu Soil-Mortai (%)		Limito (CA	I NS 3001 Method (D10\	
Liau	uid Limit (%)	35	Lillius - (SA	NS SOUT MELITOUN	an iu)	<u> </u>
Plasticity Index (%)		9				<u>a</u> 60
		4.5			40	
LINE	Linear Shrinkage (%) 4.5 Material Strength - (SANS 3001 Method GR30,GR40 - SCALPED)					ž 20
-	Max Dry Density (kg/m3)	1873	- (SANS 3001	lilletiida Gh30,Gh4	I SCALPED)	0.0 0.1 1.0 10.0 100.0
MDD	Optimum Moisture Content (%)	11.6				0.0 0.1 1.0 10.0 100.0 Sieve Size
Σ	Mould Moisture Content (%)	11.6				
-	Relative Compaction (%)	100.0				CBR Chart
Α	Swell (%)	2.0				10
	Relative Compaction (%)	96.3				3
В	Swell (%)	2.3			-	CBR (%)
_		92.1				8
С	Relative Compaction (%) Swell (%)	2.4				
					-	1 1 2
l	@100% Max Dry Density	3				Compaction (%)
œ	@98% Max Dry Density	3				• 00000
GBI	@95% Max Dry Density	2				• 88290
	@93% Max Dry Density	2				Wearing Course Graph (TRH 20)
<u> </u>	@90% Max Dry Density	1		0		G 500 - Slippery
<u> </u>	Material Condition					ğ 400 -
In	situ Moisture Content (%)		<u> </u>			9 350 Good 2 300 Good (May be Dusty)
	Soil Classification Of The Material Based Only On The Tests Results Above				o 200 - Erodible Materials Ravels	
	COLTO Specification:	Not Classified				를 100
<u> </u>	AASHTO System	A-4				0
	Unified System	SM				0 4 8 12 16 20 24 28 32 36 40 44 48 Grading Coefficient (Gc)
Tes	ts marked with a (*) are N		Grading Coefficient (GC)			

· Specimens delivered to Outeniqua Lab in good order.

Ruaan Lesch Technical Signatory

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

Copyrignt © 2014 Liewelyn rearncote. All Hights Reserved.

The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (×), non compliant (×) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, issue 2:20 June 2007 Section 2.

The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliant (×) or non compliant (×) based on a 95% level of confidence with reference to SAMM GUIDANCE 1, issue 2:20 June 2007 Section 2.

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Director of Outeniqua Lab (Pty) Ltd.

Measuring Equipment, Insceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

Shiftle every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab (Pty) Ltd nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

Director:

Liestoper Reserved.

Civil Eng.) & RSC Hone (Transport)

Director:

Materials Testing Laboratory

OUTENIQUA 6 Mirrorball Street, George : PO Box 3186, George Industria, 6536

Tel: 044 8743274 : Fax: 044 8745779 : e-mail: llewelyn@outeniqualab.co.za

R-CBR-1-9 Jun-23

T0347

Customer :	Terra Geotechnical	Project :	Gwaing WWTW
	7 Albatros Street	Date Received :	18/04/2024
	Still Bay	Date Reported :	20/05/2024
	6674	Req. Number :	1219/24
Attention :	Eugene van der Walt	No. of Pages :	8 of 10

TEST REPORT CALIFORNIA BEARING RATIO

		A. Carrier and A. Car	ii OliiiiA D	EARING RAII	<u> </u>	
Sample Position (SV)		TP12	COLTO:			88291
Depth (mm)		1700-2600	Not			Sieve Analysis
Sample No		88291	Classified			100
Materials O Colour Soil Type Classification		In-sit	u		,	Percentage Passing 80 88 80 88 80 80 80 80 80 80 80 80 80
ria B	를 Colour	Light F	led			ss 60
ate	Soil Type	Silty C	lav			e br 40
ž	Classification	Existin				and the second s
				ANS 3001 Method	GR1)	20
	75 mm	100				0.0 0.1 1.0 10.0 100.0
	63 mm	100	Opinion			Sieve Size
gu	50 mm	100				122227
Passing	37.5 mm	100				CBR Chart
Dag.	28 mm	100				
e	20 mm	100				96
taç	14 mm	100				(%) H 90 92 94 96 98 100 102
ë	5 mm	100				O 30 92 94 90 98 100 102
Percentage	2 mm	100				
ď	0.425 mm	99				0
	0.075 mm	53.6				Compaction (%)
	0.073 11111		ndicators - (S	ANS 3001 Method	I DR5)	
Gra	ding Modulus *	0.48	idicators - (o		1	200 80 81 81
	arse Sand Soil-Mortar (%)	1				Sieve Analysis
008	arse Saria Soli-Mortai (78)		Limite - (SA	NS 3001 Method (2B10)	E 80
Lia	uid Limit (%)	23	Lilling - (OA	l lo occi metrica v	1	Porcentage Passing 60 60 40 70 70 70 70 70 70 70 70 70 70 70 70 70
Plasticity Index (%)		6				95
Linear Shrinkage (%)		3.0				40
Line	ear Shirikage (78)		- (SANS 3001	L Method GR30,GR4	0 - SCAL BED)	a 20
	Max Dry Density (kg/m3)	1939	- (SANS 3001	l	O-SCALPED)	0.0 0.1 1.0 10.0 100.0
MDD	Optimum Moisture Content (%)	10.3				Sieve Size
₹	Mould Moisture Content (%)	10.1				
	Relative Compaction (%)	100.0				CBR Chart
Α	Swell (%)	3.4				10
	Relative Compaction (%)	95.3				3
В	Swell (%)	4.4				СВЯ (%)
	Relative Compaction (%)	91.3				5
С	Swell (%)	5.8				
	@100% Max Dry Density	2				1 0 2
	@98% Max Dry Density	2				Compaction (%)
CBR	@95% Max Dry Density	1				● 88291
2	@93% Max Dry Density	1				
	@90% Max Dry Density	1				Wearing Course Graph (TRH 20)
\vdash	Material Condition		550 450 Sippery			
Iո						5 400 - 350 -
10	Insitu Moisture Content (%) Soil Classification Of The Material Based Only On The Tests Results Above			300 Good (May be Dusty) 250 Erodible Ravels		
\vdash	COLTO Specification:	Not Classified	nateriai Based	I I I I I I I I I I I I I I I I I I I	nesults ADOVE	250 - Erodible Materials - Ravels - Ravels
						100 - South and Comments
	AASHTO System	A-4				Ravels and Corrugates 0 4 8 12 16 20 24 28 32 36 40 44 48
Ļ.	Unified System	CL-ML	dia			Grading Coefficient (Gc)
res	ts marked with a (*) are N	IOT SANAS ACCIE	eanea results			

· Specimens delivered to Outeniqua Lab in good order.

Ruaan Lesch Technical Signatory

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

Copyrignt © 2014 Liewelyn rearncote. All Hights Reserved.

The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (×), non compliant (×) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, issue 2:20 June 2007 Section 2.

The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliant (×) or non compliant (×) based on a 95% level of confidence with reference to SAMM GUIDANCE 1, issue 2:20 June 2007 Section 2.

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Director of Outeniqua Lab (Pty) Ltd.

Measuring Equipment, Insceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

Shiftle every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab (Pty) Ltd nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

Director:

Liestoper Reserved.

Civil Eng.) & RSC Hone (Transport)

Materials Testing Laboratory

OUTENIQUA 6 Mirrorball Street, George : PO Box 3186, George Industria, 6536 Tel: 044 8743274 : Fax: 044 8745779 : e-mail: llewelyn@outeniqualab.co.za R-CBR-1-9 <u>Jun-23</u>

T0347

	Terra Geotechnical	Project :	Gwaing WWTW
	7 Albatros Street	Date Received :	18/04/2024
	Still Bay	Date Reported :	20/05/2024
	6674	Req. Number :	1219/24
Attention :	Eugene van der Walt	No. of Pages :	9 of 10

TEST REPORT **CALIFORNIA BEARING RATIO**

Specimens delivered to Outeniqua Lab in good order.

Ruaan Lesch Technical Signatory

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (*), non compliant (*) and uncertain (*) opinion indica approximate 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2: 20 June 2007 Section 2.

2. The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliant (*) or non compliant (*) based on a 95% level of confidence with reference to SAMM GUIDANCE 1, Issue 2 : 20 June 2007 Section 2.

3. This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Director of Outeniqua Lab (Pty) Ltd.

4. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the terms tested and are an indication only of the sample provided and/or taken.

5. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab (Pty) Ltd nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroreous conclusions drawn therefrom or for any consequence thereof.

Materials Testing Laboratory

OUTENIQUA 6 Mirrorball Street, George : PO Box 3186, George Industria, 6536 Tel: 044 8743274 : Fax: 044 8745779 : e-mail: llewelyn@outeniqualab.co.za R-CBR-1-9 Jun-23

T0347

1	Terra Geotechnical	Project :	Gwaing WWTW
	7 Albatros Street	Date Received :	18/04/2024
Gustomer.	Still Bay	Date Reported :	20/05/2024
	6674	Req. Number :	1219/24
Attention:	Eugene van der Walt	No. of Pages :	10 of 10

TEST REPORT **CALIFORNIA BEARING RATIO**

		<u> </u>	•	EARING RAII	_	
	nple Position (SV)	TP14	COLTO:			88293
Depth (mm)		1600-2700	Not			Sieve Analysis
	nple No	88293	Classified			100
Material Source Colour Soil Type Classification		In-sit	u			<u>g</u> ° 80
- <u>r</u>	턴 Colour	Dark Br	own			8 60 60
ate	ຼື Soil Type	Sandy Lea	ın Clay			9 B 40
Σ	Classification	Existin	ng			Parcentage Passing 20
\Box		Material II	ndicators - (S	ANS 3001 Method	d GR1)	<u>a</u>
	75 mm	100	io			0.0 0.1 1.0 10.0 100.0
	63 mm	100	Opinion			Sieve Size
Passing	50 mm	100				CBR Chart
SSI	37.5 mm	100				10 CBN CHART
	28 mm	100				
Percentage	20 mm	100				8
ıta	14 mm	100				© 1 90 92 94 96 98 100 102
ē	5 mm	99				
er	2 mm	92				
۱ ـ	0.425 mm	75				
	0.075 mm	66.3				Compaction (%)
		Material I	ndicators - (S	ANS 3001 Method	PR5)	
Gra	ding Modulus *	0.66				Sieve Analysis
Coa	rse Sand Soil-Mortar (%)	19				100
		Atterberg	Limits - (SA	NS 3001 Method (GR10)	Discourage 60 60 40 40 40 40 40 40 40 40 40 40 40 40 40
	uid Limit (%)	31				6 60
	sticity Index (%)	10				96 40
Line	ear Shrinkage (%)	5.0				9 20
	Material Strength - (SANS 3001 Method GR30,GR40 - SCALPE					a
	Max Dry Density (kg/m3)	1871				0.0 0.1 1.0 10.0 100.0 Sieve Size
MDD	Optimum Moisture Content (%)	10.6				Sieve Size
_	Mould Moisture Content (%)	10.7				CBR Chart
A	Relative Compaction (%)	100.0				10
	Swell (%)	3.1				
В	Relative Compaction (%)	95.2				CBR (%)
_	Swell (%)	5.3				S C C C C C C C C C C C C C C C C C C C
c	Relative Compaction (%)	91.6				
Ľ	Swell (%)	6.8				1
	@100% Max Dry Density	2				0 2 Compaction (%)
<u>~</u>	@98% Max Dry Density	2				
B	@95% Max Dry Density	1				• 88293
ľ	@93% Max Dry Density	1				Wearing Course Graph (TRH 20)
<u> </u>	@90% Max Dry Density	1				550 T
L.	Material Condition					Sippery Sipp
ln	situ Moisture Content (%)					350 - Good 300 - (May be Dusty)
<u> </u>			Material Based	Only On The Tests	Results Above	250 - Erodible D 200 - Materials Ravels
L_	COLTO Specification:	Not Classified				를 100
	AASHTO System	A-4				0
<u> </u>	Unified System	CL	L			0 4 8 12 16 20 24 28 32 36 40 44 48 Grading Coefficient (Gc)
Tes	ts marked with a (*) are N	IOT SANAS Accre	edited results			Grading Coemcient (GC)

· Specimens delivered to Outeniqua Lab in good order.

Ruaan Lesch Technical Signatory For Outeniqua Lab (Pty) Ltd.

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

Copyrignt © 2014 Liewelyn rearncote. All Hights Reserved.

The opinion column is an interpretation of the direct comparison between the quoted specification and the single test sample results obtained. The compliant (×), non compliant (×) and uncertain (*) opinion indicators are based on an approximate 95% level of confidence with reference to SAMM GUIDANCE 1, issue 2:20 June 2007 Section 2.

The uncertain (*) indicates that the test result is either equal to or is above / below the specified limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliant (×) or non compliant (×) based on a 95% level of confidence with reference to SAMM GUIDANCE 1, issue 2:20 June 2007 Section 2.

This report (with attachments) is the correct record of all measurements made, and may not be reproduced other than with full written approval from the Director of Outeniqua Lab (Pty) Ltd.

Measuring Equipment, Insceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and/or taken.

Shiftle every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab (Pty) Ltd nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

Director:

Liestoper Reserved.

Civil Eng.) & RSC Hone (Transport)

Director:

Materials Testing Laboratory

6 Mirrorball Street, George : PO Box 3186, George Industria, 6536

Jan-22

R-FIND-1-6

Tel: 044 8743274 : Fax: 044 8745779 : e-mail: llewelyn@outeniqualab.co.za T0347 Terra Geotechnical Project: Gwaing WWTW 7 Albatros Street Date Received: 18/04/2024 Customer Still Bay Date Reported: 20/05/2024 6674 Req. Number: 1219/24 Attention: Eugene van der Walt No. of Pages : 1 of 14

TEST REPORT

FOUNDATION INDICATOR - (ASTM Method D422)

Sample Position (SV)		TP1
Depth (mm):		1100-1800
Sample No.:		88280
L	Source	In-situ
iptic	Colour	Light Reddish Orange
Scr	Soil Type	Silt/Silty Clay
ă	Classification	Existing
	th (ı	oth (mm): nple No.: Source Colour Soil Type

Liquid Limit (%)	21
Plasticity Index (%)	7
Linear Shrinkage (%)	4
Moisture Content (%)	0.0
% Clay	44
% Silt	20
% Sand	35
% Gravel	1
Unified Soil Classification	CL-ML
Julilled Soll Glassification	OL-IVIL

· Specimen delivered to Outeniqua Lab in good order.

Ruaan Lesch Technical Signatory For Outeniqua Lab (Pty) Ltd.

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

- ed other than with full written approval from the Directors of Outeniqua Lab 2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and / or taken
- 3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

Director:

Materials Testing Laboratory

6 Mirrorball Street, George : PO Box 3186, George Industria, 6536 Tel: 044 8743274 : Fax: 044 8745779 : e-mail: llewelyn@outeniqualab.co.za

R-FIND-1-6

Jan-22

Terra Geotechnical Project: Gwaing WWTW 7 Albatros Street Date Received: 18/04/2024 Customer Still Bay Date Reported: 20/05/2024 6674 Req. Number : 1219/24 Attention: Eugene van der Walt No. of Pages: 6 of 14

TEST REPORT

FOUNDATION INDICATOR - (ASTM Method D422)

Sample Position (SV)		Position (SV)	TP6
Depth (mm):		mm):	900-1800
Sample No.:		No.:	88285
"	n	Source	In-situ
rial	scription	Colour	Light Brown Orange
Materials	SCL	Soil Type	Sandy Lean Clay
2	De	Classification	Existing

Liquid Limit (%)	43
Plasticity Index (%)	23
Linear Shrinkage (%)	12
Moisture Content (%)	0.0
% Clay	50
% Silt	15
% Sand	19
% Gravel	16
Unified Soil Classification	CL

· Specimen delivered to Outeniqua Lab in good order.

Ruaan Lesch Technical Signatory For Outeniqua Lab (Ptv) Ltd.

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

- ed other than with full written approval from the Directors of Outeniqua Lab 2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and / or taken
- 3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

Director:

Materials Testing Laboratory

6 Mirrorball Street, George : PO Box 3186, George Industria, 6536

Jan-22

R-FIND-1-6

Tel: 044 8743274 : Fax: 044 8745779 : e-mail: llewelyn@outeniqualab.co.za T0347 Terra Geotechnical Project: Gwaing WWTW 7 Albatros Street Date Received: 18/04/2024 Customer Still Bay Date Reported: 20/05/2024 6674 Req. Number : 1219/24 Attention: Eugene van der Walt No. of Pages : 7 of 14

TEST REPORT

FOUNDATION INDICATOR - (ASTM Method D422)

0:	TONDATION INDICATOR (ACTIVIDED DELLE)				
Sample Position (SV)		TP7			
Depth (mm):		0-900			
Sample No.:		88286			
s L	Source	In-situ			
rial	Colour	Dark Brown			
Materials Description	Soil Type	Silty Sand			
2 8	Classification	Existing			

Liquid Limit (%)	NP
Plasticity Index (%)	NP
Linear Shrinkage (%)	NP
Moisture Content (%)	0.0
% Clay	18
% Silt	14
% Sand	67
% Gravel	1
Unified Soil Classification	SM
AASHTO Soil	Λ 1

Classification

· Specimen delivered to Outeniqua Lab in good order.

Ruaan Lesch Technical Signatory For Outeniqua Lab (Pty) Ltd.

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

- ed other than with full written approval from the Directors of Outeniqua Lab 2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and / or taken
- 3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

Director:

Materials Testing Laboratory

Terra Geotechnical Project: Gwaing WWTW 7 Albatros Street Date Received: 18/04/2024 Customer Still Bay Date Reported: 20/05/2024 6674 Req. Number: 1219/24 Attention: Eugene van der Walt No. of Pages : 8 of 14

TEST REPORT

FOUNDATION INDICATOR - (ASTM Method D422)

-	1 CONDATION INDICATOR - (ASTM Method D422)				
Sample Position (SV)		TP7			
Depth (mm):		1600-2700			
Sample No.:		88287			
, L	Source	In-situ			
erials	Colour	Dark Brown			
Materials Descriptio	Soil Type	Sandy Lean Clay			
2 0	Classification	Existing			

Liquid Limit (%)	35
Plasticity Index (%)	11
Linear Shrinkage (%)	6
Moisture Content (%)	0.0
% Clay	22
% Silt	39
% Sand	30
% Gravel	9
Unified Soil Classification	CL
AASHTO Soil	٨٥

Classification

R-FIND-1-6

Jan-22

· Specimen delivered to Outeniqua Lab in good order.

A-6

Ruaan Lesch Technical Signatory For Outeniqua Lab (Pty) Ltd.

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

Director:

- ed other than with full written approval from the Directors of Outeniqua Lab 2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and / or taken

3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

Customer

Attention:

Materials Testing Laboratory

6 Mirrorball Street, George : PO Box 3186, George Industria, 6536

R-FIND-1-6

Jan-22

Tel: 044 8743274 : Fax: 044 8745779 : e-mail: llewelyn@outeniqualab.co.za T0347 Terra Geotechnical Project: Gwaing WWTW 7 Albatros Street Date Received: 18/04/2024 Still Bay Date Reported: 20/05/2024 6674 Req. Number : 1219/24 Eugene van der Walt No. of Pages: 9 of 14

TEST REPORT

FOUNDATION INDICATOR - (ASTM Method D422)

reconstruction in process of the same and th		
nple	Position (SV)	TP9
oth (r	mm):	1100-2500
nple	No.:	88288
erials	Source Colour	In-situ
		Light Brown
	Soil Type	Sandy Lean Clay
Ď	Classification	Existing
	oth (Colour Soil Type

Liquid Limit (%)	33
Plasticity Index (%)	10
Linear Shrinkage (%)	5
Moisture Content (%)	0.0
% Clay	18
% Silt	31
% Sand	39
% Gravel	12
Unified Soil Classification	CL

· Specimen delivered to Outeniqua Lab in good order.

Ruaan Lesch Technical Signatory For Outeniqua Lab (Pty) Ltd.

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

- ed other than with full written approval from the Directors of Outeniqua Lab 2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and / or taken

3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

Materials Testing Laboratory

6 Mirrorball Street, George : PO Box 3186, George Industria, 6536

Jan-22

R-FIND-1-6

Tel: 044 8743274 : Fax: 044 8745779 : e-mail: llewelyn@outeniqualab.co.za T0347 Terra Geotechnical Project: Gwaing WWTW 7 Albatros Street Date Received: 18/04/2024 Customer Still Bay Date Reported: 20/05/2024 6674 Req. Number: 1219/24 Attention: Eugene van der Walt No. of Pages : 10 of 14

TEST REPORT

POUNDATION INDICATOR - (ASTM Method D422)			
Sample Position (SV)		TP10	
Depth (mm):		1000-1700	
Sample No.:		88289	
ω _E Soι	urce	In-situ	
ig ig Col	our	Light Brown	
Materials Description	l Type	Sandy Lean Clay	
² □ Cla	ssification	Existing	

Liquid Limit (%)	27
Plasticity Index (%)	13
Linear Shrinkage (%)	7
Moisture Content (%)	0.0
% Clay	40
% Silt	15
% Sand	44
% Gravel	1
Unified Soil Classification	CL

· Specimen delivered to Outeniqua Lab in good order.

Ruaan Lesch Technical Signatory For Outeniqua Lab (Pty) Ltd.

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

- ced other than with full written approval from the Directors of Outeniqua Lab 2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and / or taken
- 3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

Director:

Materials Testing Laboratory

6 Mirrorball Street, George : PO Box 3186, George Industria, 6536

Jan-22

R-FIND-1-6

Tel: 044 8743274 : Fax: 044 8745779 : e-mail: llewelyn@outeniqualab.co.za T0347 Terra Geotechnical Project: Gwaing WWTW 7 Albatros Street Date Received: 18/04/2024 Customer Still Bay Date Reported: 20/05/2024 6674 Req. Number : 1219/24 Attention: Eugene van der Walt No. of Pages : 11 of 14

TEST REPORT FOUNDATION INDICATOR - (ASTM Method D422)

1 CONDATION INDICATOR - (ASTM Method D422)			
Sample Position (SV)		TP11	
Depth (mm):		2200-2500	
Sample No.:		88290	
s u	Source	In-situ	
erials	Colour	Light Brown	
Materials Descriptio	Soil Type	Silty Sand	
	Classification	Existing	

Liquid Limit (%)	35
Plasticity Index (%)	9
Linear Shrinkage (%)	5
Moisture Content (%)	0.0
% Clay	11
% Silt	35
% Sand	37
% Gravel	17
Uniting Coll Classification	CM
Unified Soil Classification	SM
AASHTO Soil	

Classification

· Specimen delivered to Outeniqua Lab in good order.

Ruaan Lesch Technical Signatory For Outeniqua Lab (Pty) Ltd.

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

- ed other than with full written approval from the Directors of Outeniqua Lab 2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and / or taken
- 3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

Director:

Customer

Attention:

Still Bay

6674

Materials Testing Laboratory

6 Mirrorball Street, George : PO Box 3186, George Industria, 6536

Jan-22

R-FIND-1-6

Tel: 044 8743274 : Fax: 044 8745779 : e-mail: llewelyn@outeniqualab.co.za T0347 Terra Geotechnical Project: Gwaing WWTW 7 Albatros Street Date Received: 18/04/2024 Date Reported: 20/05/2024 Req. Number: 1219/24 Eugene van der Walt No. of Pages: 12 of 14

TEST REPORT

FOUNDATION INDICATOR - (ASTM Method D422)

recommendation (recommendation)		
ole Position (SV)	TP12	
h (mm):	1700-2600	
ole No.:	88291	
Source	In-situ	
Colour Soil Type	Light Red	
	Silt/Silty Clay	
Classification	Existing	
r	I (mm): sole No.: Source Colour Soil Type	

Liquid Limit (%)	23
Plasticity Index (%)	6
Linear Shrinkage (%)	3
Moisture Content (%)	0.0
% Clay	38
% Silt	31
% Sand	31
% Gravel	0
Unified Soil Classification	CL-ML

· Specimen delivered to Outeniqua Lab in good order.

Ruaan Lesch Technical Signatory For Outeniqua Lab (Pty) Ltd.

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

- ced other than with full written approval from the Directors of Outeniqua Lab 2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and / or taken
- 3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

Director:

Materials Testing Laboratory

6 Mirrorball Street, George : PO Box 3186, George Industria, 6536

Jan-22

R-FIND-1-6

Tel: 044 8743274 : Fax: 044 8745779 : e-mail: llewelyn@outeniqualab.co.za T0347 Terra Geotechnical Project: Gwaing WWTW 7 Albatros Street Date Received: 18/04/2024 Customer Still Bay Date Reported: 20/05/2024 6674 Req. Number : 1219/24 Attention: Eugene van der Walt No. of Pages : 13 of 14

TEST REPORT FOUNDATION INDICATOR - (ASTM Method D422)

01	TOOKBATION INDICATOR (ACTIM Method B422)		
Sample Position (SV)		ion (SV)	TP13
Depth (mm):			1000-2500
Sample No.: 88292			88292
S	Soul	rce	In-situ
rial	E Colo	our	Light Brown
Materials	Colo Soil	Туре	Sandy Silt
2	□ Clas	Classification	Existing

Liquid Limit (%)	36
Plasticity Index (%)	7
Linear Shrinkage (%)	4
Moisture Content (%)	0.0
% Clay	18
% Silt	32
% Sand	33
% Gravel	17
Unified Soil Classification	ML

· Specimen delivered to Outeniqua Lab in good order.

Ruaan Lesch Technical Signatory For Outeniqua Lab (Ptv) Ltd.

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

- ed other than with full written approval from the Directors of Outeniqua Lab 2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and / or taken
- 3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

Director:

Materials Testing Laboratory

6 Mirrorball Street, George : PO Box 3186, George Industria, 6536

Jan-22

R-FIND-1-6

Tel: 044 8743274 : Fax: 044 8745779 : e-mail: llewelyn@outeniqualab.co.za T0347 Terra Geotechnical Project: Gwaing WWTW 7 Albatros Street Date Received: 18/04/2024 Customer Still Bay Date Reported: 20/05/2024 6674 Req. Number: 1219/24 Attention: Eugene van der Walt No. of Pages : 14 of 14

TEST REPORT FOUNDATION INDICATOR - (ASTM Method D422)

1 OUNDATION INDICATOR - (ASTIM Method D422)		
Sample Position (SV)		TP14
Depth (mm):		1600-2700
Sample No.:		88293
s	Source	In-situ
erials	를 걸 Colour	Dark Brown
Materials	Soil Type	Sandy Lean Clay
2 0	Classification	Existing

Liquid Limit (%)	31
Plasticity Index (%)	10
Linear Shrinkage (%)	5
Moisture Content (%)	0.0
% Clay	22
% Silt	40
% Sand	30
% Gravel	8
Unified Soil Classification	CL
AASHTO Soil	

Classification

· Specimen delivered to Outeniqua Lab in good order.

Ruaan Lesch Technical Signatory For Outeniqua Lab (Pty) Ltd.

Copyright © 2014 Llewelyn Heathcote. All Rights Reserved.

- ed other than with full written approval from the Directors of Outeniqua Lab 2. Measuring Equipment, traceable to National Standards is used where applicable. Results reported in this Test Report relate only to the items tested and are an indication only of the sample provided and / or taken
- 3. While every care is taken to ensure the correctness of all tests and reports, neither Outeniqua Lab nor its employees shall be liable in any way whatever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequence thereof.

Director:

Oedometer Swell Test

Sample Detai	I	Initial	Final
Height	(mm)	20.2	18.9
Diameter	(mm)	63.2	63.2
Weight	(g)	125.7	125.7
Moisture	(%)	24.3	26.8
Dry Density	(Mg/m ³)	1.60	1.67
Bulk Density	(Mg/m ³)	1.98	2.11
Void Ratio		0.575	0.479
SG		2.52	
Disturbed/Undisturb	oed	Undist	urbed
Remoulded Density	(Mg/m ³)	-	

Load (kPa)	Height (mm)	Void Ratio
6.0	20.170	0.575
6.0	20.420	0.595
12.5	20.380	0.592
25	20.380	0.592
50	20.080	0.568
100	19.840	0.550
200	19.330	0.510
400	18.750	0.464
800	18.030	0.408
200	18.280	0.428
50	18.590	0.452
12.5	18.930	0.479

Swell Results			
Swell Percentage	1.2	%	
Swell Pressure	36	kPa	

Project	Gwaing WWTW		
Sample	G10		
Client	Terra Geotechnical	Test Method	BS1377 - 5: 1990
Jobfile	SWL35304	Test Date	27 04 2024

01/02/2021 Rev2 TR/GEO-SW0009 Compiled: M. Steyn Approved: R. Wilson

APPENDIX C

C.1 DPSH Test Results

