

# Mixed Use Development – Farm Portion 50 of 202, Pacaltsdorp

Prepared for: L.B.T Properties (Pty) Ltd

12 December 2025

Client Reference No. Erf 202/50





SMEC simplifies the complex. We unlock the potential of our people to look at infrastructure differently, creating better outcomes for the future.



engineering  
positive  
change

## Document Control

|                 |                                                                                                       |
|-----------------|-------------------------------------------------------------------------------------------------------|
| Document Type   | Civil Services Report                                                                                 |
| Project Title   | Mixed Use Development – Farm Portion 50 of 202, Pacaltsdorp                                           |
| Project Number  | C3357                                                                                                 |
| File Location   | P:\C3357 Hansmoeskraal\3_Working\3-5_DivW\Reports\C3357 Hansmoeskraal Civil Services Report Rev2.docx |
| Revision Number | 2                                                                                                     |

## Revision History

| Revision No. | Date       | Prepared By | Reviewed By | Approved for Issue By |
|--------------|------------|-------------|-------------|-----------------------|
| 0            | 7/10/2024  | E. du Toit  | J. Hough    | D. Sharp              |
| 1            | 25/01/2025 | E. du Toit  | J. Hough    | D. Sharp              |
| 2            | 12/12/2025 | E. du Toit  | J. Hough    | D. Sharp              |

## Issue Register

| Distribution List          | Date Issued | Number of Copies   |
|----------------------------|-------------|--------------------|
| L.B.T Properties (Pty) Ltd | 7/10/2024   | x1 Electronic Copy |
| L.B.T Properties (Pty) Ltd | 24/01/2025  | x1 Electronic Copy |
| L.B.T Properties (Pty) Ltd | 12/12/2025  | x1 Electronic Copy |

## SMEC Company Details

|             |                                                                                                   |
|-------------|---------------------------------------------------------------------------------------------------|
| Approved by | Damian Sharp                                                                                      |
| Address     | 7 Mangold Street, Gqeberha                                                                        |
| Phone       | +27 41 363 6777                                                                                   |
| Email       | Damian.Sharp@smeccom                                                                              |
| Website     | www.smeccom                                                                                       |
| Signature   | <br>2025-12-12 |

The information within this document is and shall remain the property of:

SMEC South Africa

## Important Notice

This report is confidential and is provided solely for the purposes of planning. This report is provided pursuant to a Consultancy Agreement between SMEC South Africa Pty Limited (“SMEC”) and L.B.T Properties (Pty) Ltd, under which SMEC undertook to perform a specific and limited task for L.B.T Properties (Pty) Ltd. This report is strictly limited to the matters stated in it and subject to the various assumptions, qualifications and limitations in it and does not apply by implication to other matters. SMEC makes no representation that the scope, assumptions, qualifications and exclusions set out in this report will be suitable or sufficient for other purposes nor that the content of the report covers all matters which you may regard as material for your purposes.

This report must be read as a whole. The executive summary is not a substitute for this. Any subsequent report must be read in conjunction with this report.

The report supersedes all previous draft or interim reports, whether written or presented orally, before the date of this report. This report has not and will not be updated for events or transactions occurring after the date of the report or any other matters which might have a material effect on its contents, or which come to light after the date of the report. SMEC is not obliged to inform you of any such event, transaction or matter nor to update the report for anything that occurs, or of which SMEC becomes aware, after the date of this report.

Unless expressly agreed otherwise in writing, SMEC does not accept a duty of care or any other legal responsibility whatsoever in relation to this report, or any related enquiries, advice or other work, nor does SMEC make any representation in connection with this report, to any person other than L.B.T Properties (Pty) Ltd. Any other person who receives a draft or a copy of this report (or any part of it) or discusses it (or any part of it) or any related matter with SMEC, does so on the basis that he or she acknowledges and accepts that he or she may not rely on this report nor on any related information or advice given by SMEC for any purpose whatsoever.

# Contents

|                                               |           |
|-----------------------------------------------|-----------|
| <b>1. Background.....</b>                     | <b>1</b>  |
| 1.1 Introduction.....                         | 1         |
| 1.2 Information Received .....                | 1         |
| 1.3 Scope of Service .....                    | 1         |
| 1.4 Limitations & Assumptions .....           | 1         |
| 1.5 Locality .....                            | 2         |
| 1.6 Zoning .....                              | 2         |
| <b>2. Terms of Reference .....</b>            | <b>2</b>  |
| <b>3. Existing Engineering Services .....</b> | <b>3</b>  |
| 3.1 Roads and Stormwater Management.....      | 3         |
| 3.2 Water Reticulation .....                  | 3         |
| 3.3 Sewer Reticulation .....                  | 4         |
| <b>4. Proposed Engineering Services.....</b>  | <b>5</b>  |
| 4.1 Internal Access Roads.....                | 5         |
| 4.1.1 Road Reserve.....                       | 5         |
| 4.1.2 Pavement Design .....                   | 5         |
| 4.2 Stormwater Management .....               | 6         |
| 4.2.1 Design Rationale .....                  | 6         |
| 4.2.2 Rainfall Data .....                     | 6         |
| 4.2.3 Catchment Area .....                    | 6         |
| 4.2.4 Stormwater Runoff .....                 | 6         |
| 4.2.5 Detention Pond .....                    | 7         |
| 4.2.6 Erosion Protection.....                 | 7         |
| 4.3 Water Reticulation .....                  | 8         |
| 4.3.1 Water Source .....                      | 8         |
| 4.3.2 Water Demand.....                       | 8         |
| 4.3.3 Fire Fighting .....                     | 8         |
| 4.3.4 Reticulation Network.....               | 8         |
| 4.3.5 Valves & Fittings .....                 | 8         |
| 4.4 Wastewater .....                          | 9         |
| 4.4.1 Hydraulic Load.....                     | 9         |
| 4.4.2 Reticulation Network.....               | 9         |
| 4.4.3 Wastewater Management .....             | 9         |
| <b>5. Cost Estimate .....</b>                 | <b>11</b> |
| <b>6. Recommendations.....</b>                | <b>12</b> |
| <b>7. Conclusion .....</b>                    | <b>12</b> |

# Appendices

[Appendix A Hansmoeskraal Site Development Plan](#)

[Appendix B All Services Layout](#)

[Appendix C Roads & Stormwater Layout](#)

[Appendix D Water Reticulation Layout](#)

[Appendix E Sewer Reticulation Layout](#)

[Appendix F Stormwater Details](#)

## Figures

|                                                           |    |
|-----------------------------------------------------------|----|
| Figure 1-1: Proposed Development Area (3 Ha) .....        | 2  |
| Figure 3-1: Existing Water Reticulation .....             | 3  |
| Figure 3-2: Existing Sewer Infrastructure near Site ..... | 4  |
| Figure 3-3: Bulk Sewer Infrastructure near Site .....     | 4  |
| Figure 4-1: Proposed Stormwater Management Swale .....    | 7  |
| Figure 4-2 Wastewater Management Layout Plan.....         | 10 |

## Tables

|                                                |    |
|------------------------------------------------|----|
| Table 4-1: Road Reserves .....                 | 5  |
| Table 4-2: Catchment Area Summary.....         | 6  |
| Table 4-3: Preliminary Stormwater Runoff ..... | 6  |
| Table 4-4 Estimated Water Demand .....         | 8  |
| Table 4-5 Peak Hydraulic Load .....            | 9  |
| Table 5-1: Preliminary Cost Estimate .....     | 11 |

# 1. Background

## 1.1 Introduction

SMEC South Africa (Pty) Ltd, hereinafter referred to as SMEC, was appointed by L.B.T Properties (Pty) Ltd, hereinafter referred to as the Developer, to compile a Civil Engineering Services Report for the proposed Hansmoeskraal Development on Portion 50, Farm 202 Pacaltsdorp, George.

The proposed green fields development consists of 51 residential units ( $21\ 950\ m^2$ ), and  $8\ 693\ m^2$  of commercial use. The report provides input to the civil engineering services required by the development and is hereinafter referred to as the CES Report.

## 1.2 Information Received

Delplan Consultants are appointed by L.B.T Properties as the project architects. The architects provided SMEC with a Site Development Plan (SDP) of the proposed commercial and residential development. The SDP is attached hereto as Appendix A.

## 1.3 Scope of Service

The scope of service entails conceptual civil engineering designs and input. The following civil engineering services are included in the scope of service:

- Access roads, internal roads and parking areas.
- Stormwater management.
- Sewer reticulation; and
- Water supply and reticulation.

Electrical engineering infrastructure is excluded from this report.

## 1.4 Limitations & Assumptions

The following limitations were encountered during the conceptual design of civil services:

1. An engineering survey has not been conducted due to the early stage of the project. Engineering software was used to obtain elevation and cadastral data to support the design process. The historic information is sufficient for conceptual designs, but more accurate data is required for detailed designs.
2. A geotechnical investigation has not been conducted due to the early stage of the project. Resources from nearby projects and experience from working in the area was used as a basis of conceptual design.

## 1.5 Locality

Hansmoeskraal is located to the south of Pacaltsdorp and falls within the George Municipality's jurisdiction in the Western Cape Province of South Africa. The figure below indicates that the proposed development is situated south of the N2 just off the Pacaltsdorp off-ramp. The proposed development can be accessed via Hibiscus Road.



Figure 1-1: Proposed Development Area (3 Ha)

## 1.6 Zoning

The proposed development is within the urban edge according to the latest George Municipality Spatial Development Framework (SDF). The development would have to be sub-categorised as residential and commercial zones.

## 2. Terms of Reference

The following standards were used to in the preliminary design:

- George Municipality Spatial Development Framework (2019)
- George Municipality Civil Engineering Standards
- The Neighbourhood Planning and Design Guide (2019)

## 3. Existing Engineering Services

SMEC obtained existing services information from the George Municipality's IMQS system. The following sections discuss existing services in the area.

### 3.1 Roads and Stormwater Management

The site is accessed via asphalt surfaced Hibiscus Street off the Beach Road Extension. There are no internal roads on the property at this stage.

The site slopes down gradually from north-west to south-east towards the Mooihoek housing development. Hibiscus street has stormwater infrastructure, but there's no stormwater infrastructure on site.

### 3.2 Water Reticulation

There is an existing 200 mm AC bulk water reticulation pipeline west of the site within the Beach Road extension road reserve. The reticulation pipeline is supplied from the Pacaltsdorp West reservoir. Refer to the figure below for the position of the existing water pipeline.



Figure 3-1: Existing Water Reticulation

It is recommended that the George Municipal appointed master planners be consulted to determine the available reservoir capacity.

### 3.3 Sewer Reticulation

There is no existing sewer infrastructure towards the immediate low point of the site (south-east corner). There is however a sewer manhole approximately 220m south-east of the site, connecting to the Hansmoeskraal pumpstation. Effluent is conveyed from the Hansmoeskraal pumpstation via a series of other pumpstations that discharge at the Outeniqua Wastewater Treatment Works (WWTW). The GIS data indicates future sewer networks planned south of the site. The two figures below indicate existing sewer infrastructure.

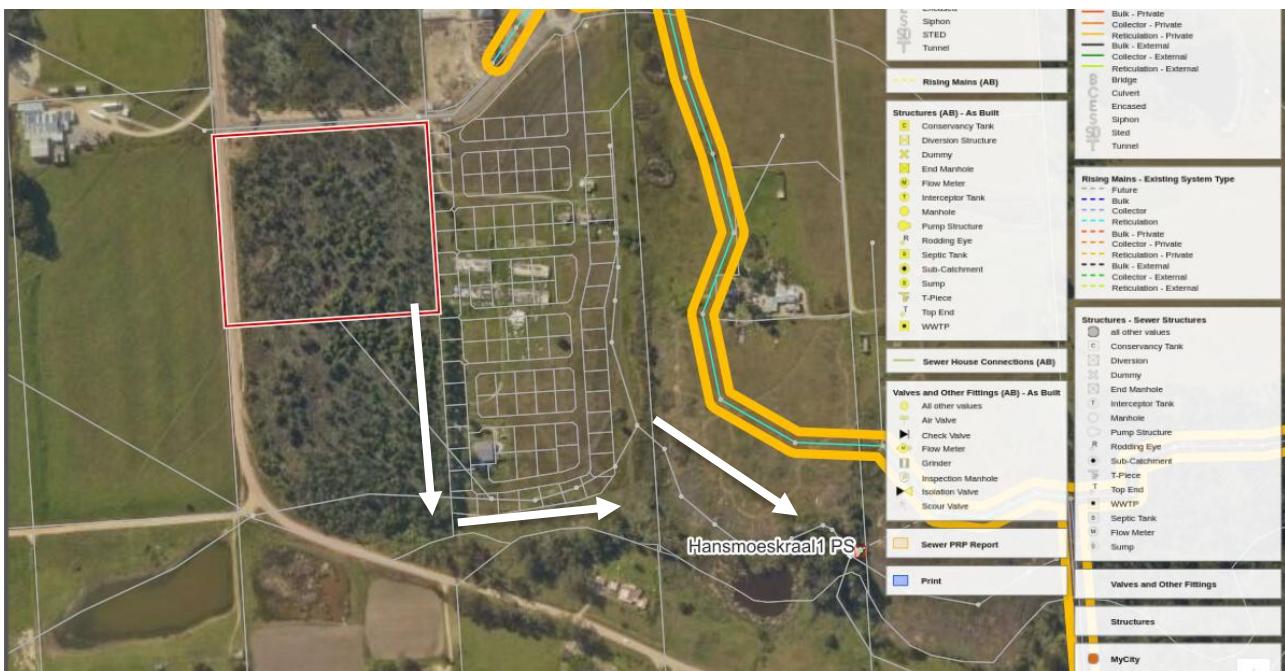



Figure 3-2: Existing Sewer Infrastructure near Site



Figure 3-3: Bulk Sewer Infrastructure near Site

It is recommended that the George Municipal appointed master planners be consulted to determine the available pumpstation and Outeniqua WWTW capacity.

## 4. Proposed Engineering Services

### 4.1 Internal Access Roads

#### 4.1.1 Road Reserve

The proposed development has two main entrances. Coming from the west on Hibiscus Street, the first entrance gives access to commercial precinct 1 and 2. The second entrance provides access for service vehicles to the back of the commercial buildings as well as access to the residential area. Although these two entrances are next to each other, they are separated by a boundary wall from the edge of the road reserve.

The table below describes the road reserves and proposals.

Table 4-1: Road Reserves

| Description                               | SDP Road Reserve         | Comments                                                                                                                                                                              |
|-------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Main roads<br>(running north to south)    | 10m<br>(6m road width)   | The road reserves seem wide enough to cater for civil services, it is proposed however that an additional 2m be added to allow for electrical and telecom services.                   |
| Secondary roads<br>(Running East to West) | 10m<br>(5.5m road width) | Alternatively, some services such as the sewer reticulation could be positioned mid-lane. This allows for vehicles to pass should there be maintenance on the pipeline in the future. |

Refer to Appendix C for the roads and stormwater layout.

#### 4.1.2 Pavement Design

It is proposed that the internal roads should have the following layer works:

- 80mm 30MPa Interlocking concrete block pavers
- 20mm Sand compacted to 100% MOD AASHTO
- 200mm C4 Subbase compacted to 97% MOD AASHTO
- 150mm G7 Subgrade compacted to 93% MOD AASHTO
- In-situ material to be ripped, shaped and recompacted to 90% MOD AASHTO

The walkways are to have the following layer works:

- 60mm Interlocking concrete block pavers
- 20mm Sand compacted 100% MOD AASHTO
- 150mm G5 Subbase compacted to 97% MOD AASHTO
- In-situ material to be ripped shaped and recompacted to 90% MOD AASHTO

Refer to Appendix C: Roads & Stormwater Layout, for the proposed typical road cross sections.

## 4.2 Stormwater Management

### 4.2.1 Design Rationale

The nature of this development is such that there is a significant increase in hardened surfaces on the property. The post-development stormwater runoff would therefore be higher than the pre-development runoff as less rainwater is able to permeate the soil.

It is proposed that stormwater for minor intervals be managed via concrete pipe systems. This system will include kerbs, channels, kerb inlets, grid inlets, manholes and outlet structures leading to a detention pond.

For the major storm intervals road reserves will act as open channels to convey stormwater to a proposed detention pond. Detention ponds are designed to attenuate runoff for major storm intervals and discharge attenuated water at pre-development or lower flow rates. The system will flow from the detention pond through a stormwater swale and connect to an existing informal stormwater channel. This stormwater management system prevents flood damage and erosion from occurring downstream of the development.

Refer to Appendix C: Roads & Stormwater Layout, for the proposed stormwater infrastructure.

### 4.2.2 Rainfall Data

The mean annual precipitation for the town of George is 813 mm (as measured by the George rainfall station). This and other rainfall data from the South African Weather Service were used to establish the rainfall intensity-duration-frequency (IDF) curves and time of concentration for the relevant return periods.

### 4.2.3 Catchment Area

Due to the topography of the site, the catchment area was taken as the entire site. The pre- and post-development catchment areas are described in the table below.

Table 4-2: Catchment Area Summary

| Catchment No.           | Size (ha) | Average Slope | Surface Coverage Description                                                                              |
|-------------------------|-----------|---------------|-----------------------------------------------------------------------------------------------------------|
| <b>Pre-Development</b>  |           |               |                                                                                                           |
| CA-01                   | 3.27      | 3 – 6%        | This area largely consists of moderate to dense tree and bush coverage with thick grass in between.       |
| <b>Post-Development</b> |           |               |                                                                                                           |
| CA-01                   | 3.27      | 1 – 6%        | Urban developed area with commercial buildings, parking lots, residential units, roads, and a small park. |

The table indicates that the surface coverage changes significantly, but the slope and size remain the same.

### 4.2.4 Stormwater Runoff

The Rational Method was used to determine the stormwater runoff for minor (1:5 Year) and major (1:50 Year) storm intervals. Refer to Table 3 for the estimated stormwater runoffs.

Table 4-3: Preliminary Stormwater Runoff

| Catchment No.           | Size (ha) | C-Factor | Runoff 1:5 year storm (m <sup>3</sup> /s) | Runoff 1:50 year storm (m <sup>3</sup> /s) |
|-------------------------|-----------|----------|-------------------------------------------|--------------------------------------------|
| <b>Pre-Development</b>  |           |          |                                           |                                            |
| CA-01                   | 3.27      | 0.33     | 0.047                                     | 0.197                                      |
| <b>Post-Development</b> |           |          |                                           |                                            |
| CA-01                   | 3.27      | 0.61     | 0.157                                     | 0.370                                      |

The total runoff for minor and major storms increases by  $0.110 \text{ m}^3/\text{s}$  and  $0.173 \text{ m}^3/\text{s}$  respectively from pre- to post-development. The change in the surface conditions from grass and forest vegetation for pre-development to surfaced roads, roof coverings and parking areas for post-development is the main contributor to the increased surface run-off.

#### 4.2.5 Detention Pond

One detention pond is proposed for the catchment area. The pond is located on the lowest portion of the site to allow gravitational flow without creating trapped low points. The detention pond has an estimated volume requirement of  $780 \text{ m}^3$ . This translates to a 2m deep pond approximately 12m wide and 33m long.

Stormwater from both the commercial and residential zones will reach the pond by means of piped flow or in a major storm, by means of open road channels. The stormwater discharge point is located on the south-eastern corner of the site. It is further proposed that a 230m swale be constructed along the eastern border of erf 202/22 that would discharge into a natural stream leading to an existing dam as indicated in the figure below (white),



Figure 4-1: Proposed Stormwater Management Swale

George Municipality appointed stormwater master planners should be consulted to determine the available capacity & overflow particulars of the dam.

#### 4.2.6 Erosion Protection

To mitigate the risk of erosion at the junction between the proposed stormwater swale and the existing non-perennial stream, sections of reno mattress have been strategically placed. These mattresses extend for 5 meters within the swale channel leading up to the connection point and continue for 2 meters on either side of the connection into the natural stream. This arrangement is designed to dissipate the energy of the water flow, reducing potential erosion effectively.

Refer to Appendix F Stormwater details.

## 4.3 Water Reticulation

### 4.3.1 Water Source

Potable water will be supplied from the Pacaltsdorp (West) Reservoir via an existing 200 mm Ø AC pipe. It is recommended that the master planners investigate if the Pacaltsdorp (West) Reservoir will be able to supply the required water demand inclusive of firefighting water. It is proposed that rainwater harvesting be implemented to reduce the demand on municipal infrastructure.

### 4.3.2 Water Demand

The water demand for this development was determined using average annual daily demand (AADD) figures for different land use categories. The table below indicates the estimated water demand for the development.

Table 4-4 Estimated Water Demand

| Building Type  | Land Use              | Ave Erf Size (m <sup>2</sup> ) | Estimated AADD/unit (ℓ/day/unit) | AADD (kℓ/day) | Peak demand (ℓ/s) |
|----------------|-----------------------|--------------------------------|----------------------------------|---------------|-------------------|
| Precinct 1     | Business / Commercial | 1020                           | 650                              | 6,63          | 0,25              |
| Precinct 2     | Business / Commercial | 1670                           | 650                              | 10,86         | 0,41              |
| Guard house    | Business / Commercial | 97                             | 650                              | 0,63          | 0,02              |
| Dwelling Units | Residential           | 51                             | 500                              | 25.50         | 0.97              |
|                |                       |                                | Total                            | 43.62         | 1.67              |

The table indicates that an AADD of 43.62 kℓ/d can be expected with a peak flow of 1.67ℓ/s.

### 4.3.3 Fire Fighting

The fire risk category for this development is taken to be Moderate Risk 1 as the development has business units. A fire hydrant is proposed near the business units with a design fire flow of 50 l/s as per the guidelines. The residential areas, however, can be categorised as Moderate Risk 2 with a design fire flow of 25 l/s. This will allow for smaller pipe sizes in the reticulation network. The Client would have to allow for a mechanical engineer to design the fire requirements for the business and commercial buildings.

Fire hydrants are positioned according to the guidelines to maximise accessibility and ensure that all properties can be reached in the event of a fire. Hydrant positions are indicated on the Water Reticulation Layout attached hereto as Appendix D.

### 4.3.4 Reticulation Network

The pipes for the development are sized to accommodate both domestic and fire firefighting use. The pipe diameters range from 110mm to 200mm Ø HDPE PE100 PN10 on main lines and 25 – 50 mm Ø for dwelling connections. A ring main is proposed for the development as it provides redundancy in the system and allows for efficient water distribution.

### 4.3.5 Valves & Fittings

Isolation valves are provided along the internal water reticulation such that no more than four valves need to be closed to isolate a section of a pipe. The offtake for water branches to the commercial allotment and to the residential allotment separately. A water meter is placed on each branch near the entrance of the development

## 4.4 Wastewater

### 4.4.1 Hydraulic Load

The hydraulic load was calculated using a percentage of water consumption based on the annual average daily demand (AADD). The table below contains a summary of the hydraulic load expected at the development.

Table 4-5 Peak Hydraulic Load

| Building Type  | Avg Erf Size (m <sup>2</sup> ) | AADD (kℓ/day) | % of water consumption to sewer | ADDWF (kℓ/day) | PDWF (kℓ/day) | PWWF (ℓ/s) |
|----------------|--------------------------------|---------------|---------------------------------|----------------|---------------|------------|
| Precinct 1     | 1020                           | 6,63          | 0,80                            | 5,30           | 13,26         | 0,18       |
| Precinct 2     | 1670                           | 10,86         | 0,80                            | 8,68           | 21,71         | 0,29       |
| Guard house    | 97                             | 0,63          | 0,80                            | 0,50           | 1,26          | 0,02       |
| Dwelling Units | 51                             | 25.50         | 0,80                            | 22,95          | 57,38         | 0,76       |
|                |                                | Total         |                                 | 37,43          | 93,61         | 1,25       |

The table indicates that an average daily hydraulic load of say 38 kℓ/d can be expected in dry weather with a peak dry weather flow of say 94 kℓ/d. The table further indicates that a maximum flow of say 1,3 l/s is expected in the reticulation network.

The master planners need to confirm if the Outeniqua WWTW has sufficient capacity to treat the additional hydraulic load.

### 4.4.2 Reticulation Network

Based on the peak flow calculated in Table 4-2, a 160 mm Ø uPVC Class 34 Heavy Duty Solid Wall pipe is proposed to reticulate wastewater. The buildings are to be connected to the main sewer line via 160 mm Ø uPVC pipes. The sewer reticulation is indicated on Appendix E.

Based on the topography of the site it is proposed that the effluent gravitate in a south-eastern direction to the lowest point which is east of unit 44.

### 4.4.3 Wastewater Management

It is proposed that the effluent be gravitated to the lowest point of the site and tie into the existing sewer infrastructure 365m south-east of the development. A servitude would have to be registered along the eastern border of erf 202/22 and the northern border of erf 10137 to tie in an existing sewer manhole. From the existing sewer manhole, effluent will gravitate towards the Hansmoeskraal sewer pumpstation.

The figure overleaf indicates the proposed gravity main (white) that ties in to the existing sewer reticulation (yellow).



Figure 4-2 Wastewater Management Layout Plan

It is recommended that the wastewater master planners be consulted to advise on the capacity of the existing 160mm Ø municipal pipeline that the rising main will be connecting to.

## 5. Cost Estimate

An elemental cost estimate was done based on the conceptual design and is summarised in the table below. The estimates exclude professional fees.

Table 5-1: Preliminary Cost Estimate

| No.                             | Description                                     | Amount (R)            |
|---------------------------------|-------------------------------------------------|-----------------------|
| 1                               | <b>Preliminaries &amp; General</b>              | R2 351 910.00         |
| 2                               | <b>Site Clearance</b>                           | R396 000.00           |
| 3                               | <b>Roadworks (parking &amp; access roads)</b>   | R7 613 790.00         |
| 4                               | <b>Water Reticulation</b>                       | R1 033 395.00         |
| 5                               | <b>Sewer Reticulation</b>                       | R1 542 875.00         |
| 6                               | <b>Stormwater Management</b>                    |                       |
| 6.1                             | Pipes, catchpits, and manholes                  | R834 952,50           |
| 6.2                             | Stormwater ponds, swales and erosion protection | R428 000.00           |
| <b>Total Excluding VAT</b>      |                                                 | <b>R14 200 922.50</b> |
| Allowance for 10% Contingencies |                                                 | R1 420 092.25         |
| <b>Subtotal</b>                 |                                                 | <b>R15 621 014.75</b> |
| 15% VAT                         |                                                 | R2 343 152.21         |
| <b>Total inclusive of VAT</b>   |                                                 | <b>R17 964 166.96</b> |

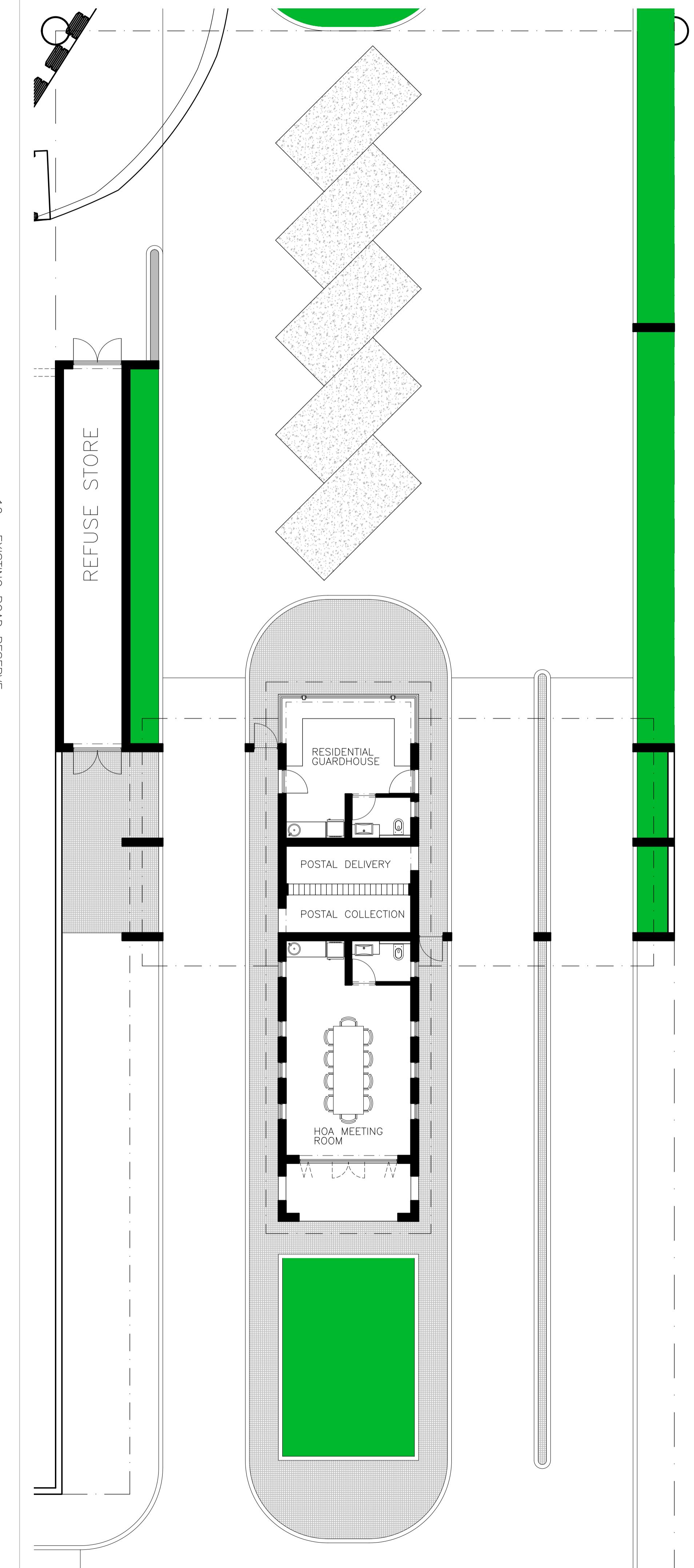
Current rates were used for the estimate; therefore, no escalation was applied. The civil engineering services for the development amounts to R17 964 166.96 including VAT.

## 6. Recommendations

Based on the findings, investigations, and conceptual designs in this report it is recommended that:

1. The road reserves seem wide enough to cater for civil services, it is proposed however that an additional 2m be added to allow for electrical and telecom services. Alternatively, some services such as the sewer reticulation could be positioned mid-lane. This allows for vehicles to pass should there be maintenance on the pipeline in the future.
2. Wastewater generated by the development be conveyed to the nearest municipal sewer manhole via a lifting station and rising main where it will follow a series of pumpstation and rising mains to the Outeniqua WWTW.
3. The master planners be consulted to determine confirm if the Outeniqua WWTW and pump stations have sufficient treatment capacity to cater for the hydraulic load from the development.
4. The master planners be consulted to confirm if the Pacaltsdorp West reservoir and distribution main have sufficient spare capacity to serve the development.

## 7. Conclusion


SMEC was appointed by L.B.T Properties (Pty) Ltd to compile a Civil Engineering Services Report for the proposed Hansmoeskraal Development on Portion 50, Farm 202 Pacaltsdorp, George. The development consists of 51 residential units, and 3 718m<sup>2</sup> of commercial buildings.

The conceptual road, stormwater, water and wastewater designs indicate that the development can be accommodated with civil engineering services. However, master planners are to be consulted to confirm traffic demand, water demand and wastewater capacities. Furthermore, the SDP should be adapted according to the recommendations of this report.

It is estimated that the implementation cost will amount to R17 964 166.96 including VAT and excluding professional fees.

The quantities and assumptions of this report are to be confirmed during the detailed design phase of the project.

[Appendix A](#)    **Hansmoeskraal Site  
Development Plan**



**NOTE**  
THIS DRAWING IS THE COPYRIGHT OF THE ARCHITECTS. DO NOT SCALE AND REFER TO FIGURED DIMENSIONS ONLY. ALL LEVELS AND DIMENSIONS MUST BE CHECKED ON SITE PRIOR TO SETTING OUT OR MANUFACTURE. ANY DISCREPANCIES MUST BE REPORTED TO THE ARCHITECT IMMEDIATELY.

| REV | DATE     | DESCRIPTION            |
|-----|----------|------------------------|
| L   | 12.11.25 | ISSUED FOR INFORMATION |
| K   | 12.11.25 | ISSUED FOR INFORMATION |
| J   | 12.11.25 | ISSUED FOR INFORMATION |
| I   | 21.10.25 | ISSUED FOR INFORMATION |
| H   | 21.08.25 | ISSUED FOR INFORMATION |
| G   | 12.03.25 | ISSUED FOR INFORMATION |
| F   | 02.10.24 | ISSUED FOR INFORMATION |
| E   | 13.09.24 | ISSUED FOR INFORMATION |
| D   | 07.08.24 | ISSUED FOR INFORMATION |
| C   | 05.08.24 | ISSUED FOR INFORMATION |
| B   | 26.07.24 | ISSUED FOR INFORMATION |
| A   | 24.07.24 | ISSUED FOR INFORMATION |

+27 (0) 44 874 1575 chris@ckarchitects.co.za chriskleuarchitects.co.za  
The Stables, Crowther Square, Cathedral Street, George 6529, South Africa  
PostNet Suite 227, Private Bag x6590, George 6530  
Chris Kleu B.Arch (UCT) Pr.Arch, SAIA/CIfA, SACAP 5707  
Chris Kleu Architects cc C/K 2011/062729/23

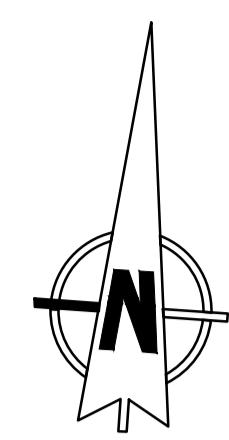
IN ASSOCIATION WITH

lo  
a

— a  
life of  
architecture

PROJECT TITLE  
**PACALTSDORP**

NEW MIXED USED DEVELOPMENT  
ON FARM PORTION 50 OF 202


# MONROE HILL SITE DEVELOPMENT PLAN RESIDENTIAL ENTRANCE

| DOB No. | LOCALITY | DRAWING No. |      |       | REV No. |
|---------|----------|-------------|------|-------|---------|
|         |          | ERF         | TYPE | SHEET |         |
|         | PD       | 50/202      |      | 200   | L       |

|                      |               |
|----------------------|---------------|
| DATE<br>JULY 2024    | CAD No<br>200 |
| SCALE<br>1:500 1:100 | DRAWN<br>CPK  |

Appendix B

## All Services Layout



FOR INFORMATION

Amendments

| Rev/Date   | Description     | Initials |
|------------|-----------------|----------|
| 0 OCT 2024 | FOR INFORMATION | L.M.     |
| 1 DEC 2025 | UPDATED SDP     | E.D.T.   |

Drawing notes

1. POSITION OF SERVICES ARE APPROXIMATE AND ACTUAL POSITIONS AND LEVELS MUST BE DETERMINED ON SITE BY CONTRACTORS BEFORE WORK COMMENCES.  
2. WORK TO BE PERFORMED IN ACCORDANCE WITH THE SANAS 1000 SPECIFICATIONS AND PROJECT SPECIFICATIONS.  
3. CONTRACTOR MUST NOT COMMENCE ANY ACTIVITY OUTSIDE THE CONSTRUCTION LIMITS.  
4. ALL MATERIAL TO BE APPROVED BY ENGINEER PRIOR TO INSTALLATION.  
5. DIMENSIONS MUST NOT BE SCALED OR ASSUMED. AFTER NOTIFICATION, DISCREPANCIES OR MISSING DIMENSIONS WILL BE CORRECTED IN WRITING BY THE ENGINEER.  
6. CONTRACTOR TO COMPLETE A DOCUMENTARY EVIDENCE OF ALL THE EXISTING SERVICES SITUATED IN CLOSE PROXIMITY TO THE BULK EARTHWORKS.  
7. CONTRACTOR TO VERIFY ALL LEVELS OF ALL EXISTING PIPES AND MANHOLES AT WHICH CONNECTIONS ARE REQUIRED AND REPORT ANY DISCREPANCIES TO THE ENGINEER PRIOR TO ANY CONSTRUCTION.  
8. CONTRACTOR TO REMOVE ALL EXISTING SERVICES AND RELOCATE THEM AS PER ENGINEER'S INSTRUCTIONS.  
9. CONTRACTOR TO VERIFY ALL LEVELS OF ALL EXISTING PIPES AND MANHOLES AT WHICH CONNECTIONS ARE REQUIRED AND REPORT ANY DISCREPANCIES TO THE ENGINEER PRIOR TO ANY CONSTRUCTION.  
10. CONTRACTOR TO REMOVE ALL EXISTING SERVICES AND RELOCATE THEM AS PER ENGINEER'S INSTRUCTIONS.  
11. CONTRACTOR TO VERIFY ALL LEVELS OF ALL EXISTING PIPES AND MANHOLES AT WHICH CONNECTIONS ARE REQUIRED AND REPORT ANY DISCREPANCIES TO THE ENGINEER PRIOR TO ANY CONSTRUCTION.  
12. CONTRACTOR TO REMOVE ALL EXISTING SERVICES AND RELOCATE THEM AS PER ENGINEER'S INSTRUCTIONS.  
13. ALL CUT AND FILL EMBANKMENTS TO BE GRASSED AND PROTECTED WITH SOIL SAVER OR SIMILAR EROSION CONTROL BLANKETS AS PER PROJECT SPECIFICATIONS.  
14. CONTRACTOR TO REMOVE ALL EXISTING SERVICES AND RELOCATE THEM AS PER ENGINEER'S INSTRUCTIONS.  
15. ALL MANHOLES COVERS TO BE HEAVY DUTY UNLESS LOCATED IN THE ROADWAY IN WHICH MANHOLE COVERS TO BE HEAVY DUTY.  
16. THE SECOND TYPE WILL DEPEND ON THE PIPE MATERIAL BEING USED FOR CONCRETE PIPES, RIGID CLASS B BEING TYPE WILL BE USED AND FOR PVC PIPES, FLEXIBLE PIPE BEDDING TYPE WILL BE USED.  
17. CONTOURS ARE INDICATIVE AND NOT ACCURATE. AN ENGINEERING SURVEY IS REQUIRED FOR ACCURATE LEVELS.

Service authority approval

| Position | Name | Date | Signature |
|----------|------|------|-----------|
| Position | Name | Date | Signature |
| Position | Name | Date | Signature |
| Position | Name | Date | Signature |
| Position | Name | Date | Signature |

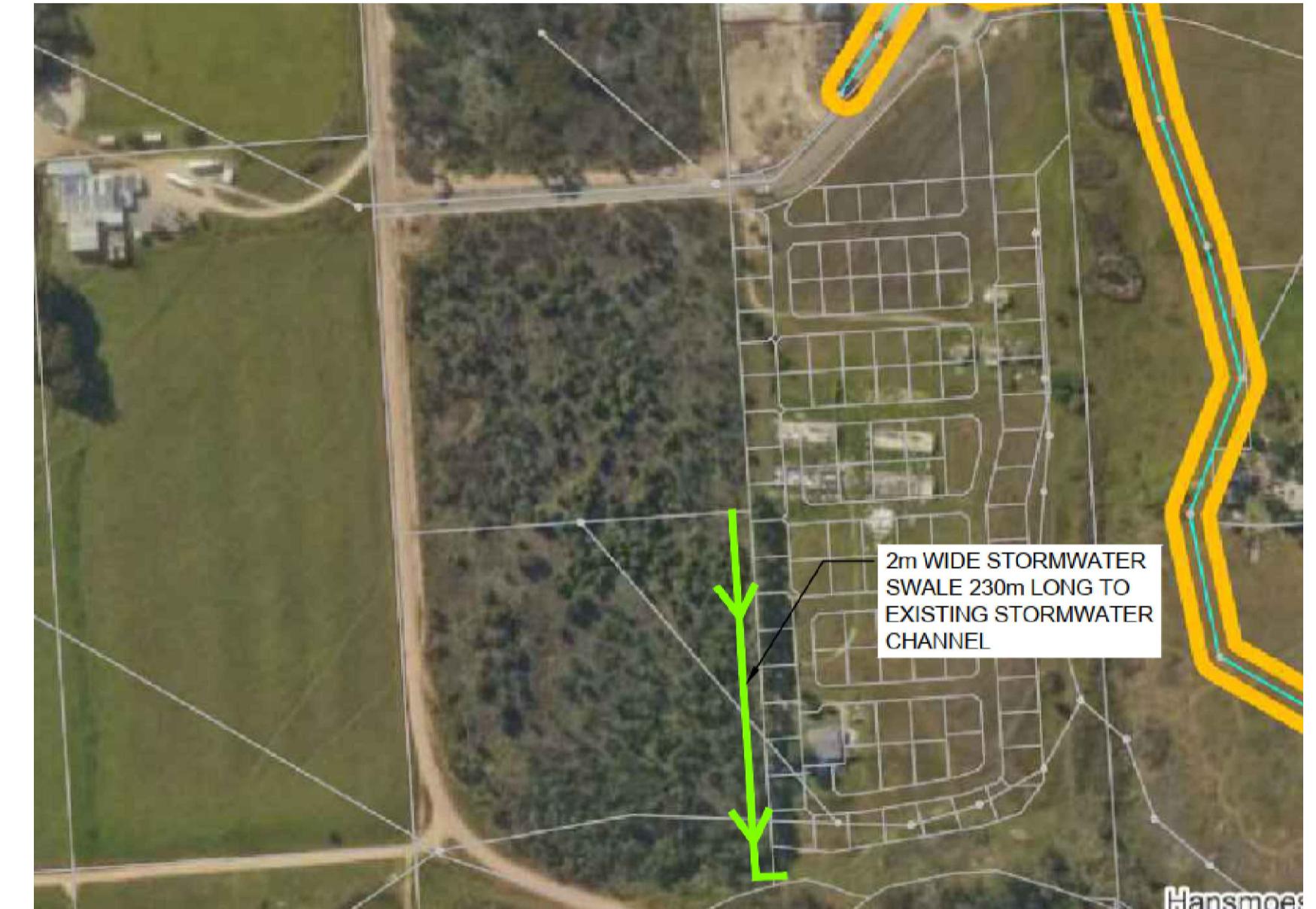
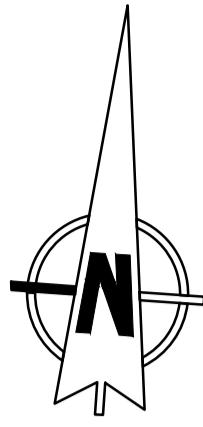
Client(s)

|                     |        |
|---------------------|--------|
| Signature           | Date   |
| Client Drawing No.: | Sht Of |

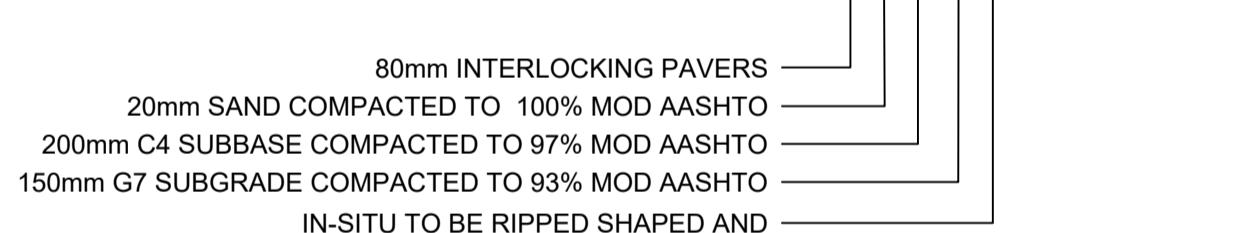
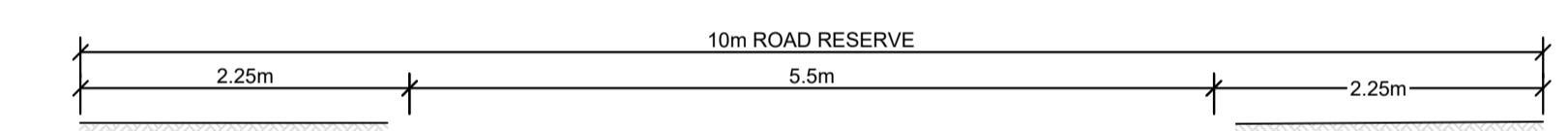
Project title

HANSMOEKRAAL  
CIVIL SERVICES

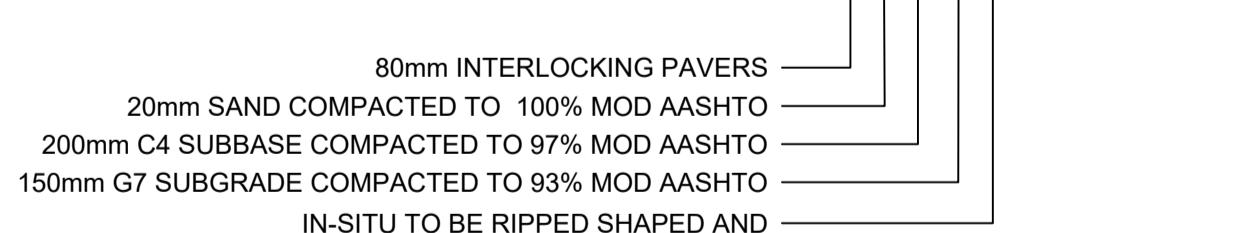
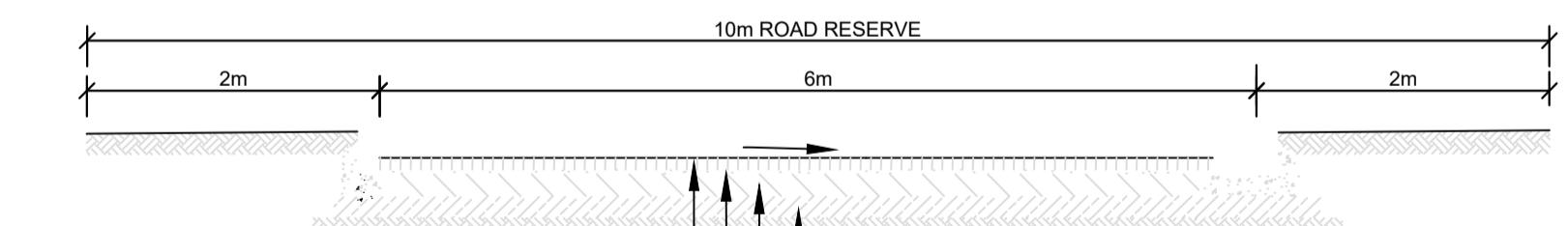
Drawing title



ALL SERVICES LAYOUT

**sme**



| Process                  | Name      | Date | Signature |
|--------------------------|-----------|------|-----------|
| Designed                 | L.MANYISA |      |           |
| Checked                  | D.SHARP   |      |           |
| Verified                 | J.KAMPMAN |      |           |
| Drawn                    | L.MANYISA |      |           |
| Checked                  | J.KAMPMAN |      |           |
| SMEC Drawing No.: Rev 01 |           |      |           |
| C1187-HMK-GEN-GA-001     |           |      |           |

Appendix C

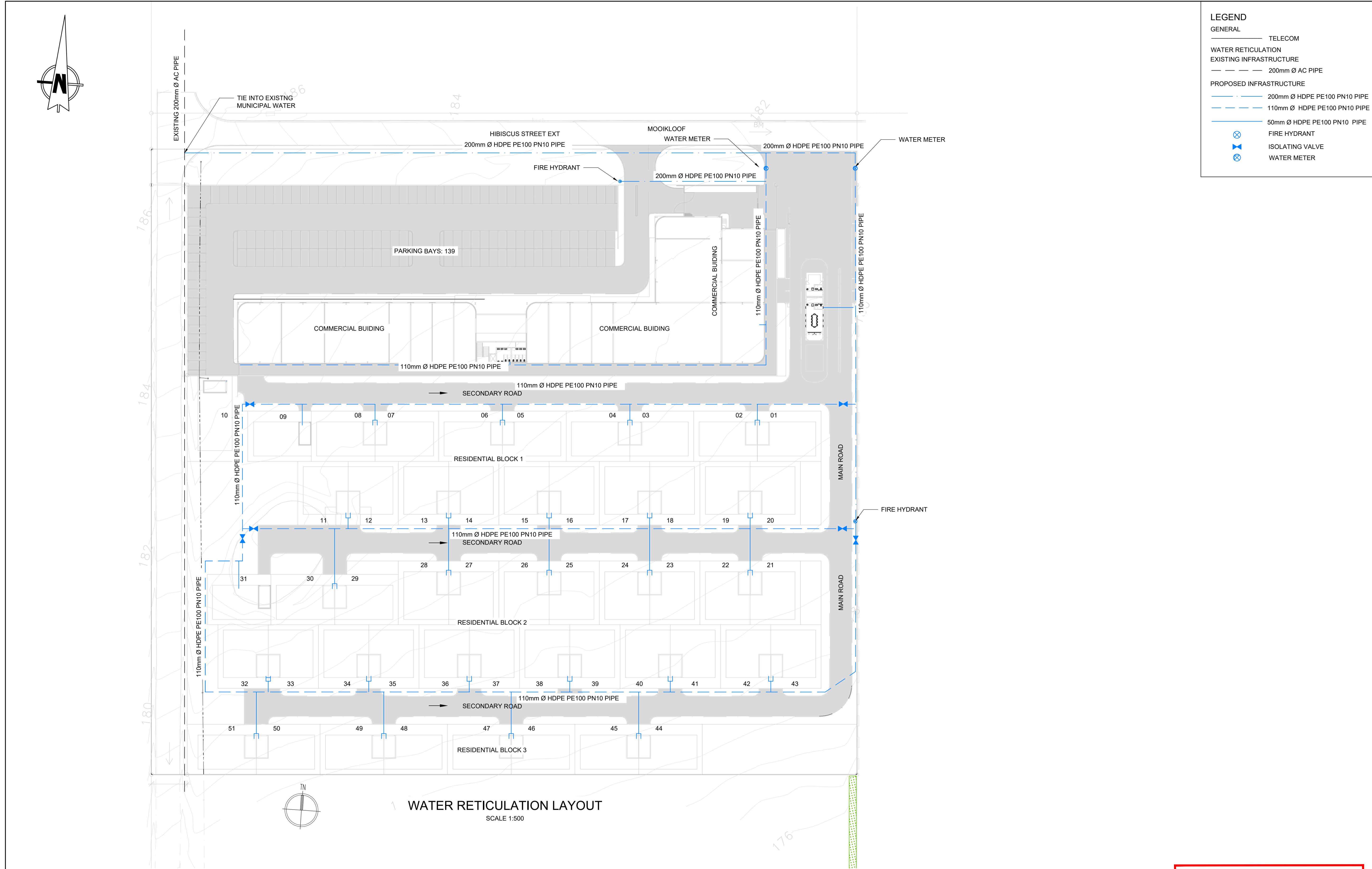


## Roads & Stormwater Layout



# STORMWATER MUNICIPAL TIE-IN LAYOUT N.T.S



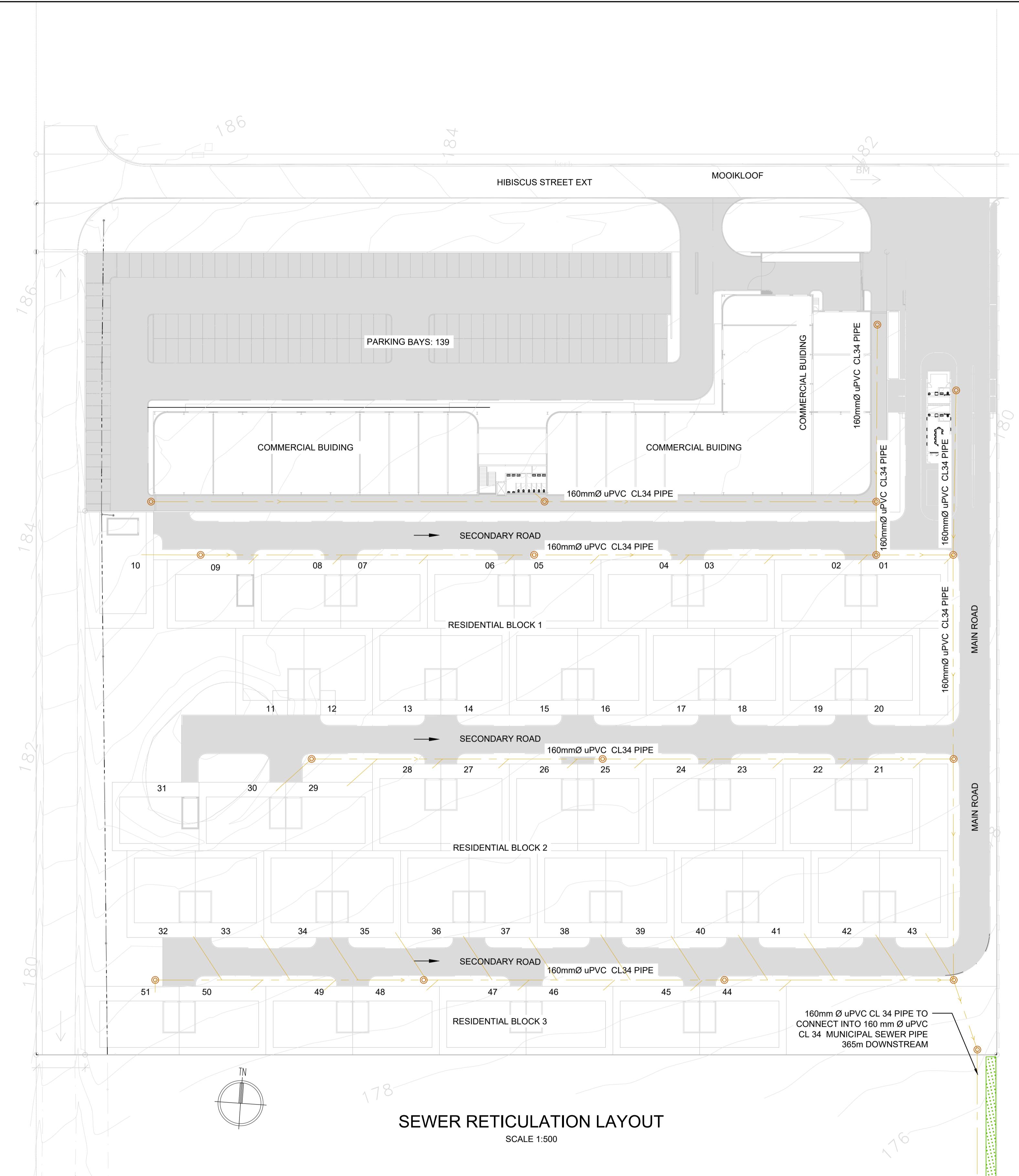
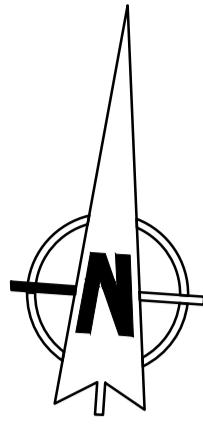
RECOMPACTED TO 90% MOD AASTHO  
PROPOSED SECONDARY ROAD  
TYPICAL CROSS SECTION




RECOMPACTED TO 90% MOD AASTHO  
PROPOSED MAIN ROAD  
TYPICAL CROSS SECTION  
SCALE 1:50

# FOR INFORMATION

Appendix D

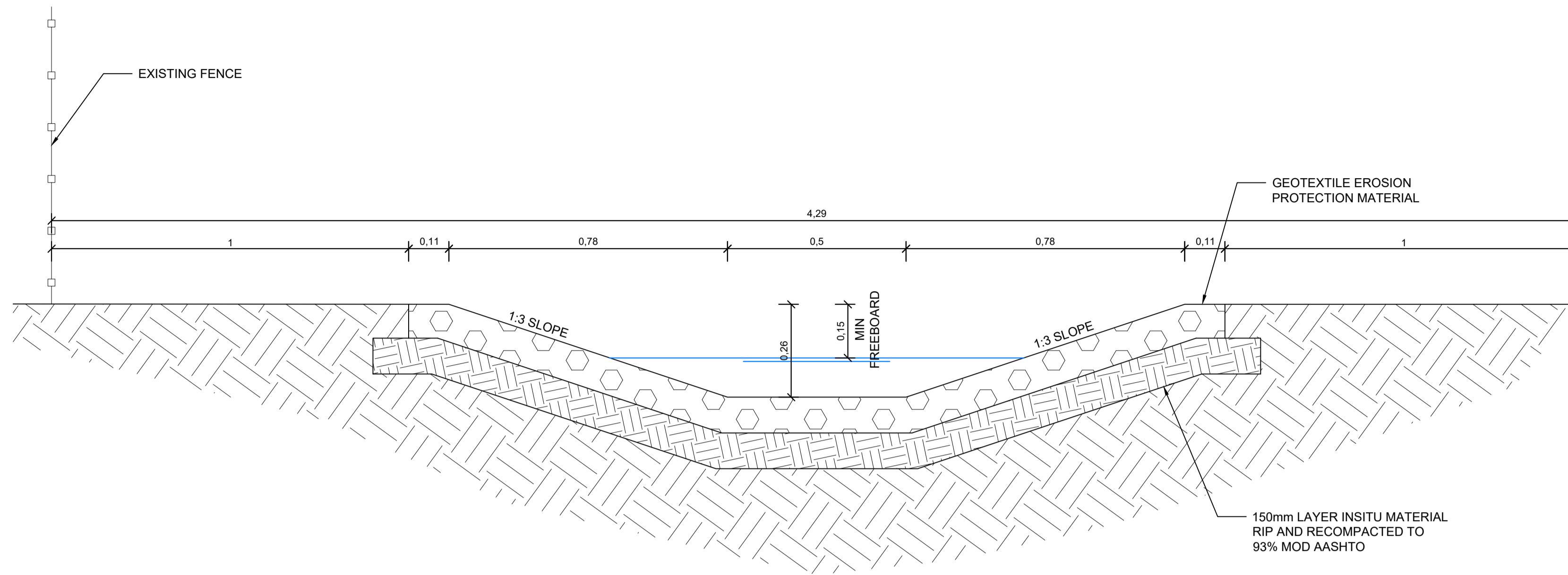


## Water Reticulation Layout



| Amendments |                 | Drawing notes |          | Service authority approval |      |      |           | Client(s) |      | Project title                |                                    | Drawing title        |            | Process |           |
|------------|-----------------|---------------|----------|----------------------------|------|------|-----------|-----------|------|------------------------------|------------------------------------|----------------------|------------|---------|-----------|
| Rev/Date   | Description     | Initials      | Initials | Position                   | Name | Date | Signature | Signature | Date | Project title                | Drawing title                      | Process              | Name       | Date    | Signature |
| 0 OCT 2024 | FOR INFORMATION | E.D           |          |                            |      |      |           |           |      | HANSMOESKRAAL CIVIL SERVICES | CIVIL SERVICES: WATER RETICULATION | Designed             | E. DU TOIT |         |           |
| 1 DEC 2025 | UPDATED SDP     | E.D.T         |          |                            |      |      |           |           |      |                              |                                    | Checked              | D. SHARP   |         |           |
|            |                 |               |          |                            |      |      |           |           |      |                              |                                    | Verified             | J. KAMPMAN |         |           |
|            |                 |               |          |                            |      |      |           |           |      |                              |                                    | Drawn                | E. DU TOIT |         |           |
|            |                 |               |          |                            |      |      |           |           |      |                              |                                    | Checked              | J. KAMPMAN |         |           |
|            |                 |               |          |                            |      |      |           |           |      |                              |                                    | SMEC Drawing No.     |            | Rev 01  |           |
|            |                 |               |          |                            |      |      |           |           |      |                              |                                    | C1187-HMK-WAT-GA-030 |            |         |           |

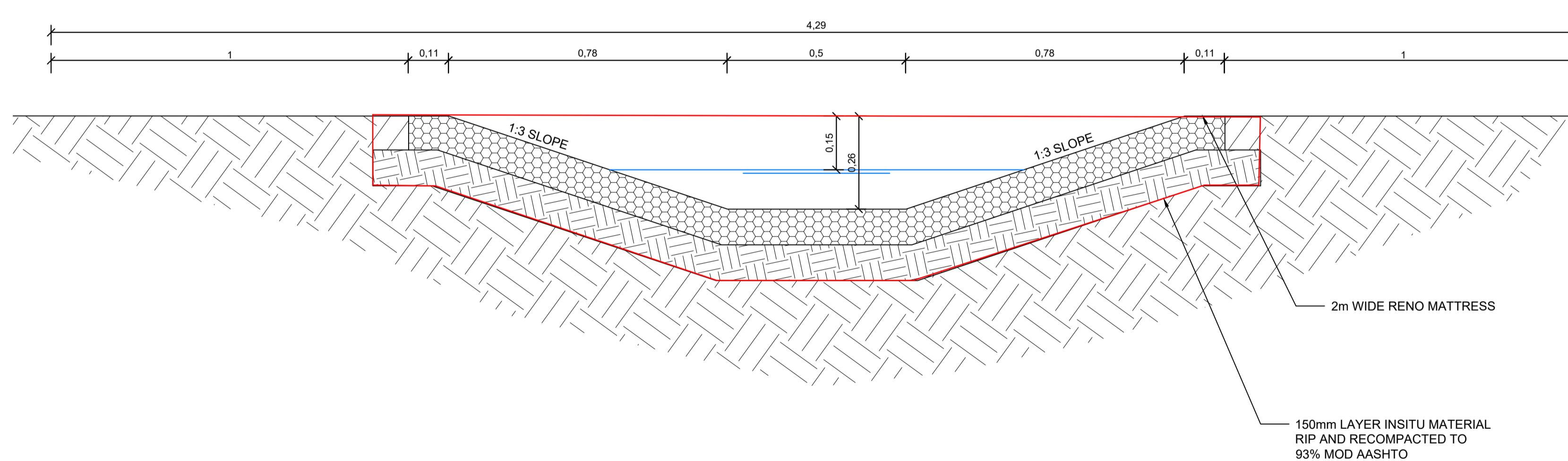
Appendix E

## Sewer Reticulation Layout



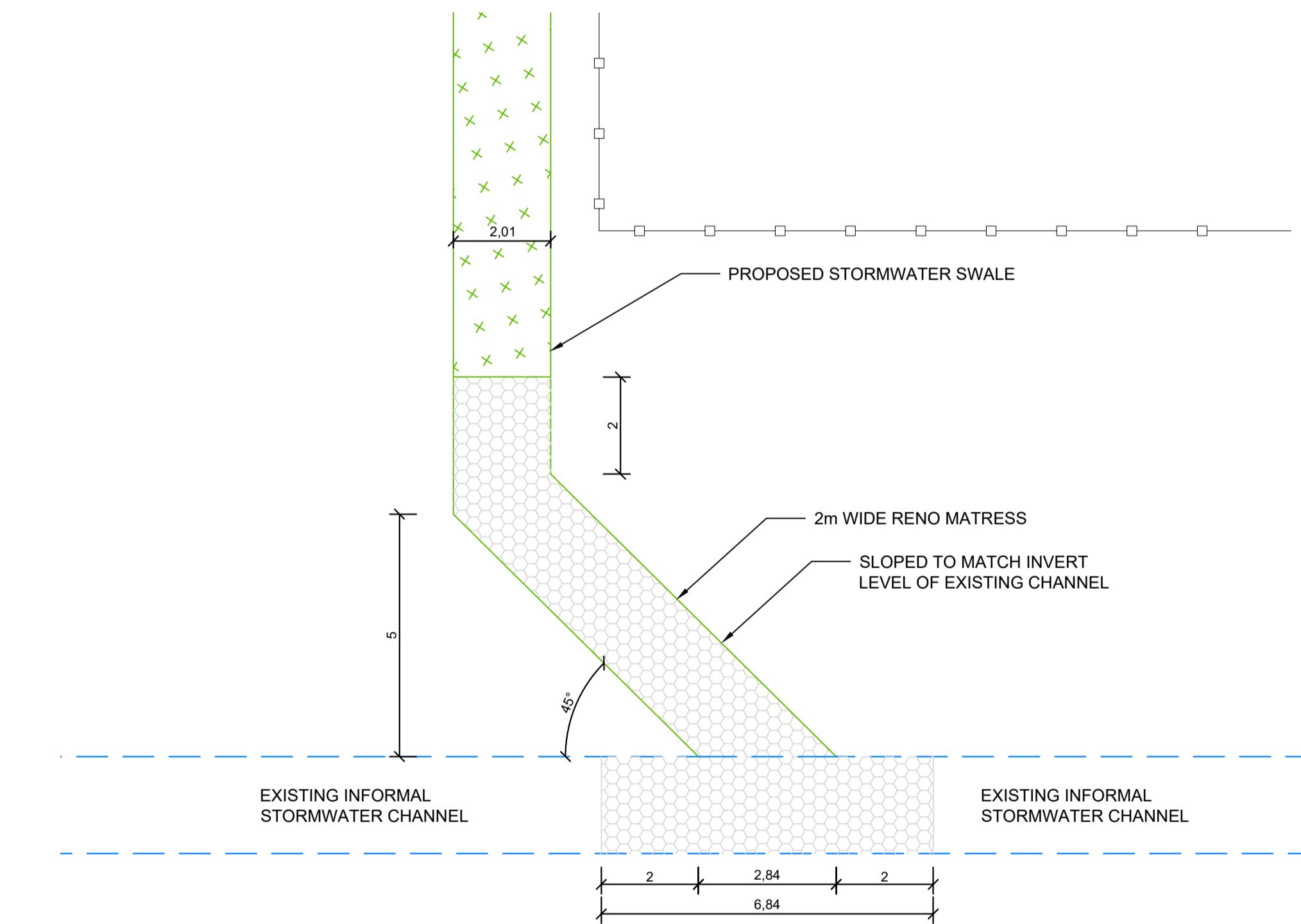

# SEWER MUNICIPAL TIE-IN LAYOUT N.T.S

# FOR INFORMATION


Appendix F

## Stormwater Details




## STORMWATER SWALE CROSS SECTION

SCALE 1:



# STORMWATER SWALE DISCHARGE CROSS SECTION

SCALE 1:



# STORMWATER SWALE DISCHARGE PLAN

SCALE 1:100

## FOR INFORMATION

|                            |      |      |           |                     |            |
|----------------------------|------|------|-----------|---------------------|------------|
| Service authority approval |      |      |           | Client(s)           |            |
| Position                   | Name | Date | Signature | Signature _____     | Date _____ |
|                            |      |      |           | Client Drawing No.: | Sht        |

|                                         |                                               |
|-----------------------------------------|-----------------------------------------------|
| Project title                           | Drawing title                                 |
| <b>HANSMOESKRAAL<br/>CIVIL SERVICES</b> | <b>CIVIL SERVICES:<br/>STORMWATER DETAILS</b> |



| Process  | Name       | Date | Signature |
|----------|------------|------|-----------|
| Designed | E.DU TOIT  |      |           |
| Checked  | D. SHARP   |      |           |
| Verified | J. KAMPMAN |      |           |
| Drawn    | E. DU TOIT |      |           |
| Checked  | J. KAMPMAN |      |           |



## SMEC South Africa

13 Progress Street  
George Western Cape 6539

[Mailing address]

**Phone:** 044 783 5029

**Email:** George@smeC.com

**engineering positive change**

SMEC simplifies the complex. We unlock the potential of our people to look at infrastructure differently, creating better outcomes for the future.

[www.smeC.com](http://www.smeC.com)